36,165 research outputs found

    Propagation of a Dark Soliton in a Disordered Bose-Einstein Condensate

    Full text link
    We consider the propagation of a dark soliton in a quasi 1D Bose-Einstein condensate in presence of a random potential. This configuration involves nonlinear effects and disorder, and we argue that, contrarily to the study of stationary transmission coefficients through a nonlinear disordered slab, it is a well defined problem. It is found that a dark soliton decays algebraically, over a characteristic length which is independent of its initial velocity, and much larger than both the healing length and the 1D scattering length of the system. We also determine the characteristic decay time.Comment: 4 pages, 2 figure

    Finite Size Scaling of the Spin Stiffness of the Antiferromagnetic S=1/2 XXZ chain

    Full text link
    We study the finite size scaling of the spin stiffness for the one-dimensional s=1/2 quantum antiferromagnet as a function of the anisotropy parameter Delta.Previous Bethe ansatz results allow a determination of the stiffness in the thermodynamic limit. The Bethe ansatz equations for finite systems are solvable even in the presence of twisted boundary conditions, a fact we exploit to determine the stiffness exactly for finite systems allowing for a complete determination of the finite size corrections. Relating the stiffness to thermodynamic quantities we calculate the temperature dependence of the susceptibility and its finite size corrections at T=0. A Luttinger liquid approach is used to study the finite size corrections using renormalization group techniques and the results are compared to the numerically exact results obtained using the Bethe ansatz equations. Both irrelevant and marginally irrelevant cases are considered

    Interpreting Physical Flows in Networks as a Communication System

    Get PDF
    ACKNOWLEDGEMENTS NR acknowledges the support of PEDECIBA, Uruguay. CG and MSB thank the Scottish University Physics Alliance (SUPA) support. MSB also acknowledges the support of EPSRC grant Ref. EP/I032606/1.Peer reviewedPublisher PD

    Tightness of the maximum likelihood semidefinite relaxation for angular synchronization

    Full text link
    Maximum likelihood estimation problems are, in general, intractable optimization problems. As a result, it is common to approximate the maximum likelihood estimator (MLE) using convex relaxations. In some cases, the relaxation is tight: it recovers the true MLE. Most tightness proofs only apply to situations where the MLE exactly recovers a planted solution (known to the analyst). It is then sufficient to establish that the optimality conditions hold at the planted signal. In this paper, we study an estimation problem (angular synchronization) for which the MLE is not a simple function of the planted solution, yet for which the convex relaxation is tight. To establish tightness in this context, the proof is less direct because the point at which to verify optimality conditions is not known explicitly. Angular synchronization consists in estimating a collection of nn phases, given noisy measurements of the pairwise relative phases. The MLE for angular synchronization is the solution of a (hard) non-bipartite Grothendieck problem over the complex numbers. We consider a stochastic model for the data: a planted signal (that is, a ground truth set of phases) is corrupted with non-adversarial random noise. Even though the MLE does not coincide with the planted signal, we show that the classical semidefinite relaxation for it is tight, with high probability. This holds even for high levels of noise.Comment: 2 figure
    corecore