849 research outputs found
Metrics with Galilean Conformal Isometry
The Galilean Conformal Algebra (GCA) arises in taking the non-relativistic
limit of the symmetries of a relativistic Conformal Field Theory in any
dimensions. It is known to be infinite-dimensional in all spacetime dimensions.
In particular, the 2d GCA emerges out of a scaling limit of linear combinations
of two copies of the Virasoro algebra. In this paper, we find metrics in
dimensions greater than two which realize the finite 2d GCA (the global part of
the infinite algebra) as their isometry by systematically looking at a
construction in terms of cosets of this finite algebra. We list all possible
sub-algebras consistent with some physical considerations motivated by earlier
work in this direction and construct all possible higher dimensional
non-degenerate metrics. We briefly study the properties of the metrics
obtained. In the standard one higher dimensional "holographic" setting, we find
that the only non-degenerate metric is Minkowskian. In four and five
dimensions, we find families of non-trivial metrics with a rather exotic
signature. A curious feature of these metrics is that all but one of them are
Ricci-scalar flat.Comment: 20 page
Influence of the Pressure on the Product Distribution in the Oxidative Dehydrogenation of Propane over a Ga2O3/MoO3 Catalyst
The yields and selectivities in both the catalyzed and non-catalyzed oxidative dehydrogenation of propane were found to increase with increasing pressure. The results showed that the maximum yields of valuable ODH products could be obtained by adjusting only reactants' partial pressure, while keeping their ratio constant
Lowest Weight Representations of Super Schrodinger Algebras in One Dimensional Space
Lowest weight modules, in particular, Verma modules over the N = 1,2 super
Schrodinger algebras in (1+1) dimensional spacetime are investigated. The
reducibility of the Verma modules is analyzed via explicitly constructed
singular vectors. The classification of the irreducible lowest weight modules
is given for both massive and massless representations. A vector field
realization of the N = 1, 2 super Schrodinger algebras is also presented.Comment: 19 pages, no figur
SO(2,1) conformal anomaly: Beyond contact interactions
The existence of anomalous symmetry-breaking solutions of the SO(2,1)
commutator algebra is explicitly extended beyond the case of scale-invariant
contact interactions. In particular, the failure of the conservation laws of
the dilation and special conformal charges is displayed for the two-dimensional
inverse square potential. As a consequence, this anomaly appears to be a
generic feature of conformal quantum mechanics and not merely an artifact of
contact interactions. Moreover, a renormalization procedure traces the
emergence of this conformal anomaly to the ultraviolet sector of the theory,
within which lies the apparent singularity.Comment: 11 pages. A few typos corrected in the final versio
Efimov effect from functional renormalization
We apply a field-theoretic functional renormalization group technique to the
few-body (vacuum) physics of non-relativistic atoms near a Feshbach resonance.
Three systems are considered: one-component bosons with U(1) symmetry,
two-component fermions with U(1)\times SU(2) symmetry and three-component
fermions with U(1) \times SU(3) symmetry. We focus on the scale invariant
unitarity limit for infinite scattering length. The exact solution for the
two-body sector is consistent with the unitary fixed point behavior for all
considered systems. Nevertheless, the numerical three-body solution in the
s-wave sector develops a limit cycle scaling in case of U(1) bosons and SU(3)
fermions. The Efimov parameter for the one-component bosons and the
three-component fermions is found to be approximately s=1.006, consistent with
the result of Efimov.Comment: 21 pages, 6 figures, minor changes, published versio
Gravity duals for non-relativistic CFTs
We attempt to generalize the AdS/CFT correspondence to non-relativistic
conformal field theories which are invariant under Galilean transformations.
Such systems govern ultracold atoms at unitarity, nucleon scattering in some
channels, and more generally, a family of universality classes of quantum
critical behavior. We construct a family of metrics which realize these
symmetries as isometries. They are solutions of gravity with negative
cosmological constant coupled to pressureless dust. We discuss realizations of
the dust, which include a bulk superconductor. We develop the holographic
dictionary and compute some two-point correlators. A strange aspect of the
correspondence is that the bulk geometry has two extra noncompact dimensions.Comment: 12 pages; v2, v3, v4: added references, minor corrections; v3:
cleaned up and generalized dust; v4: closer to published versio
Conformal symmetry transformations and nonlinear Maxwell equations
We make use of the conformal compactification of Minkowski spacetime
to explore a way of describing general, nonlinear Maxwell fields with conformal
symmetry. We distinguish the inverse Minkowski spacetime
obtained via conformal inversion, so as to discuss a doubled compactified
spacetime on which Maxwell fields may be defined. Identifying with the
projective light cone in -dimensional spacetime, we write two
independent conformal-invariant functionals of the -dimensional Maxwellian
field strength tensors -- one bilinear, the other trilinear in the field
strengths -- which are to enter general nonlinear constitutive equations. We
also make some remarks regarding the dimensional reduction procedure as we
consider its generalization from linear to general nonlinear theories.Comment: 12 pages, Based on a talk by the first author at the International
Conference in Mathematics in honor of Prof. M. Norbert Hounkonnou (October
29-30, 2016, Cotonou, Benin). To be published in the Proceedings, Springer
201
Kennis- en innovatieagenda : creatieve industrie 2018-2021
De creatieve industrie versterkt het innovatievermogen van Nederland.
Met haar innovatie- en verbeeldingskracht kan zij mensen verbinden,
in beweging krijgen en vertrouwen geven in de wereld van morgen.
De sector is een onmisbare schakel in het geven van antwoorden op grote
maatschappelijke vraagstukken en het bieden van een zinvolle betekenis aan
nieuwe technologische mogelijkheden. Om deze impact te realiseren, maakt
de creatieve professional gebruik van een kennisbasis van Key Enabling
Methodologies; strategieën, methoden en modellen die structuur geven aan het
creatieve proces en deze valideren. In deze methodologieën stelt de professional
de mens centraal en is hij in staat om nieuwe werelden en visies te verbeelden
en technologieën en actoren uit verschillende hoeken bij elkaar te brengen.
De samenleving is het speelveld van de creatieve professional. In deze tijd,
waarin transities in de maatschappij gaande zijn, verandert de manier waarop
de professional werkt en samenwerkt. De rol van de creatieve professional is
meer fluïde dan voorheen. Tegelijkertijd wordt er meer verwacht van de
onderbouwing van ontwikkelde interventies en neemt de complexiteit van
vraagstukken en oplossingen toe. Om de creatieve professional hierin te
ondersteunen, is samenwerking tussen creatieve industrie en
kennisinstellingen cruciaal
Fluiddynamik des Kammerwassers beim chronischen einfachen Glaukom: Mechanismen der Drucknormalisierung durch ein künstliches Abflusssystem
Zusammenfassung: Die Wechselwirkung zwischen Kräften, Verteilung und Absorption des Kammerwassers im subkonjunktivalen Gewebe wird anhand eines kürzlich publizierten theoretischen Modells untersucht, das die Produktion von Flüssigkeit im Auge und deren Eliminierung durch das Trabekelwerk, das uveosklerale Gewebe und einen Shunt beschreibt. Zielgröße dabei ist der intraokulare Druck. Die Mechanismen von neu geschaffenen Abflusswegen werden mithilfe der Theorie der porösen Medien dargestellt, die sich auf ein Sickerkissen beziehen, das unter dem subkonjunktivalen Gewebe liegt. Die rechnerische Analyse basiert auf der Geometrie und den Parametern, die das Zu- und Abflusssystem charakterisieren. Diese sind durch die Produktion von Kammerwasser, den chirurgisch angelegten Abflusskanal, sodann durch die Resorption in den episkleralen Gefäßen und durch die hydraulischen Eigenschaften des subkonjunktivalen Gewebes und des Sickerkissens sowie durch dessen Geometrie gegeben. Anhand parametrischer Untersuchungen können klinische Befunde physikalisch begründet werde
- …
