7,463 research outputs found
Discovery Reach of Charged MSSM Higgs Bosons at CMS
We review the 5 sigma discovery contours for the charged MSSM Higgs boson at
the CMS experiment with 30/fb for the two cases M_H+ m_t. In
order to analyze the search reach we combine the latest results for the CMS
experimental sensitivities based on full simulation studies with
state-of-the-art theoretical predictions of MSSM Higgs-boson production and
decay properties. Special emphasis is put on the SUSY parameter dependence of
the 5 sigma contours. The variation of can shift the prospective
discovery reach in tan_beta by up to Delta tan_beta = 40.Comment: 3 pages, 2 figures, talk given at SUSY08, Seoul, Kore
Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes
The development of new efficient afterglow phosphors is currently hampered by a limited understanding of the persistent luminescence mechanism. Radioluminescence and x-ray absorption measurements on the persistent phosphor SrAl2O4:Eu,Dy were combined to reveal possible valence state changes for the rare earth (co)dopants. Traps in the phosphor material are quickly filled when exposing thermally emptied SrAl2O4:Eu,Dy powder to x-rays. On the same time scale, a partial oxidation of Eu2+ to Eu3+ is observed by XANES (x-ray absorption near-edge spectroscopy), while for the trivalent dysprosium the valence state remains unchanged. The impact of these observations on the recently proposed models for persistent luminescence is discussed
Summary of the CMS Discovery Potential for the MSSM SUSY Higgses
This work summarises the present understanding of the expected MSSM SUSY
Higgs reach for CMS. Many of the studies presented here result from detailed
detector simulations incorporating final CMS detector design and response. With
30 fb-1 the h -> gamma,gamma and h -> bb channels allow to cover most of the
MSSM parameter space. For the massive A,H,H+ MSSM Higgs states the channels A,H
-> tau,tau and H+ -> tau,nu turn out to be the most profitable ones in terms of
mass reach and parameter space coverage. Consequently CMS has made a big effort
to trigger efficiently on taus. Provided neutralinos and sleptons are not too
heavy, there is an interesting complementarity in the reaches for A,H ->
tau,tau and A,H -> chi,chi.Comment: 19 pages, 27 figure
Structural properties of amorphous metal carbides; theory and experiment
By means of theoretical modeling and experimental synthesis and
characterization, we investigate the structural properties of amorphous
Zr-Si-C. Two chemical compositions are selected, Zr0.31Si0.29C0.40 and
Zr0.60Si0.33C0.07. The amorphous structures are generated in the theoretical
part of our work, by the stochastic quenching (SQ) method, and detailed
comparison is made as regards structure and density of the experimentally
synthesized films. These films are analyzed experimentally using X-ray
absorption spectroscopy, transmission electron microscopy and X-ray
diffraction. Our results demonstrate for the first time a remarkable agreement
between theory and experiment concerning bond distances and atomic coordination
of this complex amorphous metal carbide. The demonstrated power of the SQ
method opens up avenues for theoretical predictions of amorphous materials in
general.Comment: 29 pages, 11 figure
Heavy MSSM Higgs Bosons at CMS: "LHC wedge" and Higgs-Mass Precision
The search for MSSM Higgs bosons will be an important goal at the LHC. In
order to analyze the search reach of the CMS experiment for the heavy neutral
MSSM Higgs bosons, we combine the latest results for the CMS experimental
sensitivities based on full simulation studies with state-of-the-art
theoretical predictions of MSSM Higgs-boson properties. The experimental
analyses are done assuming an integrated luminosity of 30 or 60 fb^-1. The
results are interpreted as 5 \si discovery contours in MSSM M_A-tan_beta
benchmark scenarios. Special emphasis is put on the variation of the Higgs
mixing parameter mu. While the variation of mu can shift the prospective
discovery reach (and correspondingly the ``LHC wedge'' region) by about Delta
tan_beta= 10, the discovery reach is rather stable with respect to the impact
of other supersymmetric parameters. Within the discovery region we analyze the
accuracy with which the masses of the heavy neutral Higgs bosons can be
determined. An accuracy of 1-4% should be achievable, depending on M_A and
tan_beta.Comment: Talk given by G.W. at EPS07 (Manchester, July 2007) and talk given by
S.H. at SUSY07 (Karlsruhe, July 2007). 4 pages, 2 figure
Feasibility of study magnetic proximity effects in bilayer "superconductor/ferromagnet" using waveguide-enhanced Polarized Neutron Reflectometry
A resonant enhancement of the neutron standing waves is proposed to use in
order to increase the magnetic neutron scattering from a
"superconductor/ferromagnet"(S/F) bilayer. The model calculations show that
usage of this effect allows to increase the magnetic scattering intensity by
factor of hundreds. Aspects related to the growth procedure (order of
deposition, roughness of the layers etc) as well as experimental conditions
(resolution, polarization of the neutron beam, background etc) are also
discussed.
Collected experimental data for the S/F heterostructure
Cu(32nm)/V(40nm)/Fe(1nm)/MgO confirmed the presence of a resonant 60-fold
amplification of the magnetic scattering.Comment: The manuscript of the article submitted to Crysstalography Reports.
23 pages, 5 figure
Antisymmetric magnetoresistance in magnetic multilayers with perpendicular anisotropy
While magnetoresistance (MR) has generally been found to be symmetric in
applied field in non-magnetic or magnetic metals, we have observed
antisymmetric MR in Co/Pt multilayers. Simultaneous domain imaging and
transport measurements show that the antisymmetric MR is due to the appearance
of domain walls that run perpendicular to both the magnetization and the
current, a geometry existing only in materials with perpendicular magnetic
anisotropy. As a result, the extraordinary Hall effect (EHE) gives rise to
circulating currents in the vicinity of the domain walls that contributes to
the MR. The antisymmetric MR and EHE have been quantitatively accounted for by
a theoretical model.Comment: 17 pages, 4 figure
Photon Physics in Heavy Ion Collisions at the LHC
Various pion and photon production mechanisms in high-energy nuclear
collisions at RHIC and LHC are discussed. Comparison with RHIC data is done
whenever possible. The prospect of using electromagnetic probes to characterize
quark-gluon plasma formation is assessed.Comment: Writeup of the working group "Photon Physics" for the CERN Yellow
Report on "Hard Probes in Heavy Ion Collisions at the LHC", 134 pages. One
figure added in chapter 5 (comparison with PHENIX data). Some figures and
correponding text corrected in chapter 6 (off-chemical equilibrium thermal
photon rates). Some figures modified in chapter 7 (off-chemical equilibrium
photon rates) and comparison with PHENIX data adde
- …
