533 research outputs found
Robustness in the long run: Auto-teaching vs Anticipation in Evolutionary Robotics
In Evolutionary Robotics, auto-teaching networks, neural networks that modify their own weights during the life-time of the robot, have been shown to be powerful architectures to develop adaptive controllers. Unfortunately, when run for a longer period of time than that used during evolution, the long-term behavior of such networks can become unpredictable. This paper gives an example of such dangerous behavior, and proposes an alternative solution based on anticipation: as in auto-teaching networks, a secondary network is evolved, but its outputs try to predict the next state of the robot sensors. The weights of the action network are adjusted using some back-propagation procedure based on the errors made by the anticipatory network. First results -- in simulated environments -- show a tremendous increase in robustness of the long-term behavior of the controller
Novelty Search in Competitive Coevolution
One of the main motivations for the use of competitive coevolution systems is
their ability to capitalise on arms races between competing species to evolve
increasingly sophisticated solutions. Such arms races can, however, be hard to
sustain, and it has been shown that the competing species often converge
prematurely to certain classes of behaviours. In this paper, we investigate if
and how novelty search, an evolutionary technique driven by behavioural
novelty, can overcome convergence in coevolution. We propose three methods for
applying novelty search to coevolutionary systems with two species: (i) score
both populations according to behavioural novelty; (ii) score one population
according to novelty, and the other according to fitness; and (iii) score both
populations with a combination of novelty and fitness. We evaluate the methods
in a predator-prey pursuit task. Our results show that novelty-based approaches
can evolve a significantly more diverse set of solutions, when compared to
traditional fitness-based coevolution.Comment: To appear in 13th International Conference on Parallel Problem
Solving from Nature (PPSN 2014
¿Derecho al comercio o imposición del libre mercado?
Si bien existe un acuerdo considerable acerca de los efectos benéficos del libre comercio (siempre y cuando la libertad sea recíproca y no arreglada a favor de los poderosos), cada vez se dan más discusiones acerca de la pretensión de evitar cualquier regulación, como lo evidencia la oposición a que se introduzca el Acuerdo Multilateral sobre la Inversión y la inquietud con las Medidas de Inversión Relacionadas con el Comercio. En este contexto, los reclamos por un derecho al comercio deben ser analizados con cuidado para determinar sus parámetros. ¿Se trata solo de que las empresas transnacionales realicen sus negocios sin someterse al control del estado
Analysing co-evolution among artificial 3D creatures
This paper is concerned with the analysis of coevolutionary dynamics among 3D artificial creatures, similar to those introduced by Sims (1). Coevolution is subject to complex dynamics which are notoriously difficult to analyse. We introduce an improved analysis method based on Master Tournament matrices [2], which we argue is both less costly to compute and more informative than the original method. Based on visible features of the resulting graphs, we can identify particular trends and incidents in the dynamics of coevolution and look for their causes. Finally, considering that coevolutionary progress is not necessarily identical to global overall progress, we extend this analysis by cross-validating individuals from different evolutionary runs, which we argue is more appropriate than single-record analysis method for evaluating the global performance of individuals
The evolution of representation in simple cognitive networks
Representations are internal models of the environment that can provide
guidance to a behaving agent, even in the absence of sensory information. It is
not clear how representations are developed and whether or not they are
necessary or even essential for intelligent behavior. We argue here that the
ability to represent relevant features of the environment is the expected
consequence of an adaptive process, give a formal definition of representation
based on information theory, and quantify it with a measure R. To measure how R
changes over time, we evolve two types of networks---an artificial neural
network and a network of hidden Markov gates---to solve a categorization task
using a genetic algorithm. We find that the capacity to represent increases
during evolutionary adaptation, and that agents form representations of their
environment during their lifetime. This ability allows the agents to act on
sensorial inputs in the context of their acquired representations and enables
complex and context-dependent behavior. We examine which concepts (features of
the environment) our networks are representing, how the representations are
logically encoded in the networks, and how they form as an agent behaves to
solve a task. We conclude that R should be able to quantify the representations
within any cognitive system, and should be predictive of an agent's long-term
adaptive success.Comment: 36 pages, 10 figures, one Tabl
Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe
Open-Ended Evolutionary Robotics: an Information Theoretic Approach
This paper is concerned with designing self-driven fitness functions for
Embedded Evolutionary Robotics. The proposed approach considers the entropy of
the sensori-motor stream generated by the robot controller. This entropy is
computed using unsupervised learning; its maximization, achieved by an on-board
evolutionary algorithm, implements a "curiosity instinct", favouring
controllers visiting many diverse sensori-motor states (sms). Further, the set
of sms discovered by an individual can be transmitted to its offspring, making
a cultural evolution mode possible. Cumulative entropy (computed from ancestors
and current individual visits to the sms) defines another self-driven fitness;
its optimization implements a "discovery instinct", as it favours controllers
visiting new or rare sensori-motor states. Empirical results on the benchmark
problems proposed by Lehman and Stanley (2008) comparatively demonstrate the
merits of the approach
Neuro-evolution Methods for Designing Emergent Specialization
This research applies the Collective Specialization Neuro-Evolution (CONE) method to the problem of evolving neural controllers in a simulated multi-robot system. The multi-robot system consists
of multiple pursuer (predator) robots, and a single evader (prey) robot. The CONE method is designed to facilitate behavioral
specialization in order to increase task performance in collective behavior solutions. Pursuit-Evasion is a task that benefits
from behavioral specialization. The performance of prey-capture strategies derived by the CONE method, are compared to those
derived by the Enforced Sub-Populations (ESP) method. Results indicate that the CONE method effectively facilitates behavioral specialization in the team of pursuer
robots. This specialization aids in the derivation of robust prey-capture strategies. Comparatively, ESP was found to be not
as appropriate for facilitating behavioral specialization and effective prey-capture behaviors
- …
