1,099 research outputs found
Predicting Rising Follower Counts on Twitter Using Profile Information
When evaluating the cause of one's popularity on Twitter, one thing is
considered to be the main driver: Many tweets. There is debate about the kind
of tweet one should publish, but little beyond tweets. Of particular interest
is the information provided by each Twitter user's profile page. One of the
features are the given names on those profiles. Studies on psychology and
economics identified correlations of the first name to, e.g., one's school
marks or chances of getting a job interview in the US. Therefore, we are
interested in the influence of those profile information on the follower count.
We addressed this question by analyzing the profiles of about 6 Million Twitter
users. All profiles are separated into three groups: Users that have a first
name, English words, or neither of both in their name field. The assumption is
that names and words influence the discoverability of a user and subsequently
his/her follower count. We propose a classifier that labels users who will
increase their follower count within a month by applying different models based
on the user's group. The classifiers are evaluated with the area under the
receiver operator curve score and achieves a score above 0.800.Comment: 10 pages, 3 figures, 8 tables, WebSci '17, June 25--28, 2017, Troy,
NY, US
Neutron Scattering and magnetization studies of BaCuCoOCl: A decorated two-dimensional antiferromagnet
BaCuOCl has two inter-penetrating square Cu sublattices, one
with square root 2 times the in-plane spacing of the other. Isotropic magnetic
interactions between the two sublattices are completely frustrated. Quantum
fluctuations resolve the intrinsic degeneracy in the ordering direction of the
more weakly coupled sublattice in favor of collinear ordering. We present
neutron scattering and magnetization studies of the magnetic structure when the
Cu ions are substituted with Co. The Co spins create new magnetic interactions
between the two sublattices. The ordering behavior of both Cu sublattices is
retained largely unmodified. Between the phase transitions of the two
sublattices spin-glass behavior is observed. Magnetization results show a
strong enhancement to the ferromagnetic aspect of the magnetic structure. The
combination of glassy behavior and large moments strongly suggest that the Co
moments induce the formation of local canted states.Comment: 4 figure
Complete set of polarization transfer coefficients for the reaction at 346 MeV and 0 degrees
We report measurements of the cross-section and a complete set of
polarization transfer coefficients for the reaction at a
bombarding energy = 346 MeV and a reaction angle =
.
The data are compared with the corresponding free nucleon-nucleon values on
the basis of the predominance of quasi-elastic scattering processes.
Significant discrepancies have been observed in the polarization transfer
, which are presumably the result of the three-proton =
3/2 resonance.
The spin--parity of the resonance is estimated to be , and the
distribution is consistent with previous results obtained for the same reaction
at = 48.8 MeV.Comment: 4 figures, Accepted for publication in Physical Review
Tight-binding parameters and exchange integrals of Ba_2Cu_3O_4Cl_2
Band structure calculations for Ba_2Cu_3O_4Cl_2 within the local density
approximation (LDA) are presented. The investigated compound is similar to the
antiferromagnetic parent compounds of cuprate superconductors but contains
additional Cu_B atoms in the planes. Within the LDA, metallic behavior is found
with two bands crossing the Fermi surface (FS). These bands are built mainly
from Cu 3d_{x^2-y^2} and O 2p_{x,y} orbitals, and a corresponding tight-binding
(TB) model has been parameterized. All orbitals can be subdivided in two sets
corresponding to the A- and B-subsystems, respectively, the coupling between
which is found to be small. To describe the experimentally observed
antiferromagnetic insulating state, we propose an extended Hubbard model with
the derived TB parameters and local correlation terms characteristic for
cuprates. Using the derived parameter set we calculate the exchange integrals
for the Cu_3O_4 plane. The results are in quite reasonable agreement with the
experimental values for the isostructural compound Sr_2Cu_3O_4Cl_2.Comment: 5 pages (2 tables included), 4 ps-figure
Performance of the neutron polarimeter NPOL3 for high resolution measurements
We describe the neutron polarimeter NPOL3 for the measurement of polarization
transfer observables with a typical high resolution of 300 keV
at 200 MeV.
The NPOL3 system consists of three planes of neutron detectors.
The first two planes for neutron polarization analysis are made of 20 sets of
one-dimensional position-sensitive plastic scintillation counters with a size
of 100 cm 10 cm 5 cm, and they cover the area of 100
100 .
The last plane for detecting doubly scattered neutrons or recoiled protons is
made of the two-dimensional position-sensitive liquid scintillation counter
with a size of 100 cm 100 cm 10 cm.
The effective analyzing powers and double scattering
efficiencies were measured by using the three kinds
of polarized neutrons from the , , and reactions at = 198 MeV.
The performance of NPOL3 defined as
are similar to that of the
Indiana Neutron POLarimeter (INPOL) by taking into account for the counter
configuration difference between these two neutron polarimeters.Comment: 28 pages, 18 figures, submitted to Nucl. Instrum. Methods Phys. Res.
Relativistic predictions of spin observables for exclusive proton knockout reactions
Within the framework of the relativistic distorted wave impulse approximation
(DWIA), we investigate the sensitivity of complete sets of polarization
transfer observables for exclusive proton knockout from the 3s,
2d and 2d states in Pb, at an incident laboratory
kinetic energy of 202 MeV, and for coincident coplanar scattering angles
(, ), to different distorting optical potentials,
finite-range (FR) versus zero-range (ZR) approximations to the DWIA, as well as
medium-modified meson-nucleon coupling constants and meson masses. Results are
also compared to the nonrelativistic DWIA predictions based on the
Schr\"{o}dinger equation.Comment: Submitted for publication to Physicical Review C, 23 pages, 7 figure
Anomalous Spin Dynamics observed by High Frequency ESR in Honeycomb Lattice Antiferromagnet InCu2/3V1/3O3
High-frequency ESR results on the S=1/2 Heisenberg hexagonal antiferromagnet
InCu2/3V1/3O3 are reported. This compound appears to be a rare model substance
for the honeycomb lattice antiferromagnet with very weak interlayer couplings.
The high-temperature magnetic susceptibility can be interpreted by the S=1/2
honeycomb lattice antiferromagnet, and it shows a magnetic-order-like anomaly
at TN=38 K. Although, the resonance field of our high-frequency ESR shows the
typical behavior of the antiferromagnetic resonance, the linewidth of our
high-frequency ESR continues to increase below TN, while it tends to decrease
as the temperature in a conventional three-dimensional antiferromagnet
decreases. In general, a honeycomb lattice antiferromagnet is expected to show
a simple antiferromagnetic order similar to that of a square lattice
antiferromagnet theoretically because both antiferromagnets are bipartite
lattices. However, we suggest that the observed anomalous spin dynamics below
TN is the peculiar feature of the honeycomb lattice antiferromagnet that is not
observed in the square lattice antiferromagnet.Comment: 5 pages, 5 figure
Confirmation of Anomalous Dynamical Arrest in attractive colloids: a molecular dynamics study
Previous theoretical, along with early simulation and experimental, studies
have indicated that particles with a short-ranged attraction exhibit a range of
new dynamical arrest phenomena. These include very pronounced reentrance in the
dynamical arrest curve, a logarithmic singularity in the density correlation
functions, and the existence of `attractive' and `repulsive' glasses. Here we
carry out extensive molecular dynamics calculations on dense systems
interacting via a square-well potential. This is one of the simplest systems
with the required properties, and may be regarded as canonical for interpreting
the phase diagram, and now also the dynamical arrest. We confirm the
theoretical predictions for re-entrance, logarithmic singularity, and give the
first direct evidence of the coexistence, independent of theory, of the two
coexisting glasses. We now regard the previous predictions of these phenomena
as having been established.Comment: 15 pages,15 figures; submitted to Phys. Rev.
- …
