1,864 research outputs found
Nuclear Quadrupole Effects in Deeply Bound Pionic Atoms
We have studied nuclear quadrupole deformation effects in deeply bound pionic
atoms theoretically. We have evaluated the level shifts and widths of the
hyperfine components using the first order perturbation theory and compared
them with the effects of neutron skin. We conclude that the nuclear quadrupole
deformation effects for deeply bound and states are very difficult to
observe and that the effects could be observed for states. We also
conclude that the deformation effects are sensitive to the parameters of the
pion-nucleus optical potential.Comment: Latex 11pages, Figures available on reques
Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations
We study the formation process of an oxygen torus during the 12–15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density (ρL) and the local electron number density (neL) from the resonant frequencies of standing Alfvén waves and the upper hybrid resonance band. The average ion mass (M) can be calculated by M ∼ ρL/neL under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0–4.0 and L = 3.7–4.5, respectively, on the morning side. The oxygen torus has M = 4.5–8 amu and extends around the plasmapause that is identified at L∼3.2–3.9. We find that during the initial phase, M is 4–7 amu throughout the plasma trough and remains at ∼1 amu in the plasmasphere, implying that ionospheric O+ ions are supplied into the inner magnetosphere already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection electric field reveals that some of thermal O+ ions distributed throughout the plasma trough are trapped within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside. This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen Probes observations. We conclude that the oxygen torus identified in this study favors the formation scenario of supplying O+ in the inner magnetosphere during the initial phase and subsequent drift during the recovery phase
Residual interaction effects on deeply bound pionic states in Sn and Pb isotopes
We have studied the residual interaction effects theoretically on the deeply
bound pionic states in Pb and Sn isotopes. We need to evaluate the residual
interaction effects carefully in order to deduce the nuclear medium effects for
pion properties, which are believed to provide valuable information on nuclear
chiral dynamics. The s- and p-wave interactions are used for the
pion-nucleon residual interactions. We show that the complex energy shifts are
around [(10-20)+i(2-7)]keV for 1s states in Sn, which should be taken into
account in the analyses of the high precision data of deeply bound pionic
states in Sn isotopes.Comment: REVTEX4, 6 pages, 5 tables, Submitted to Phys. Rev. C, Some
explanations are added in Version
Phase transition in inelastic disks
This letter investigates the molecular dynamics of inelastic disks without
external forcing. By introducing a new observation frame with a rescaled time,
we observe the virtual steady states converted from asymptotic energy
dissipation processes. System behavior in the thermodynamic limit is carefully
investigated. It is found that a phase transition with symmetry breaking occurs
when the magnitude of dissipation is greater than a critical value.Comment: 9 pages, 6 figure
Dynamics of Viscoplastic Deformation in Amorphous Solids
We propose a dynamical theory of low-temperature shear deformation in
amorphous solids. Our analysis is based on molecular-dynamics simulations of a
two-dimensional, two-component noncrystalline system. These numerical
simulations reveal behavior typical of metallic glasses and other viscoplastic
materials, specifically, reversible elastic deformation at small applied
stresses, irreversible plastic deformation at larger stresses, a stress
threshold above which unbounded plastic flow occurs, and a strong dependence of
the state of the system on the history of past deformations. Microscopic
observations suggest that a dynamically complete description of the macroscopic
state of this deforming body requires specifying, in addition to stress and
strain, certain average features of a population of two-state shear
transformation zones. Our introduction of these new state variables into the
constitutive equations for this system is an extension of earlier models of
creep in metallic glasses. In the treatment presented here, we specialize to
temperatures far below the glass transition, and postulate that irreversible
motions are governed by local entropic fluctuations in the volumes of the
transformation zones. In most respects, our theory is in good quantitative
agreement with the rich variety of phenomena seen in the simulations.Comment: 16 pages, 9 figure
Early Spectroscopy of the 2010 Outburst of U Scorpii
We present early spectroscopy of the recurrent nova U~Sco during the outburst
in 2010. We successfully obtained time-series spectra at 0.37--0.44~d, where denotes the time from the discovery of the
present outburst. This is the first time-resolved spectroscopy on the first
night of U Sco outbursts. At ~d the H line consists
of a blue-shifted ( km s) narrow absorption component and a wide
emission component having triple peaks, a blue ( km s), a
central ( km s) and a red ( km s) ones. The
blue and red peaks developed more rapidly than the central one during the first
night. This rapid variation would be caused by the growth of aspherical wind
produced during the earliest stage of the outburst. At ~d the
H line has a nearly flat-topped profile with weak blue and red peaks at
km s. This profile can be attributed to a nearly
spherical shell, while the asphericity growing on the first night still
remains. The wind asphericity is less significant after d.Comment: 5 pages, 3 figures, Accepted for publication of PASJ Letter
A Symmetry Property of Momentum Distribution Functions in the Nonequilibrium Steady State of Lattice Thermal Conduction
We study a symmetry property of momentum distribution functions in the steady
state of heat conduction. When the equation of motion is symmetric under change
of signs for all dynamical variables, the distribution function is also
symmetric. This symmetry can be broken by introduction of an asymmetric term in
the interaction potential or the on-site potential, or employing the thermal
walls as heat reservoirs. We numerically find differences of behavior of the
models with and without the on-site potential.Comment: 13 pages. submitted to JPS
Dynamical brittle fractures of nanocrystalline silicon using large-scale electronic structure calculations
A hybrid scheme between large-scale electronic structure calculations is
developed and applied to nanocrystalline silicon with more than 10 atoms.
Dynamical fracture processes are simulated under external loads in the [001]
direction. We shows that the fracture propagates anisotropically on the (001)
plane and reconstructed surfaces appear with asymmetric dimers. Step structures
are formed in larger systems, which is understood as the beginning of a
crossover between nanoscale and macroscale samples.Comment: 10 pages, 4 figure
Neutron capture therapy with a new boron-porphyrin compound in the rat 9L glioma model
Neutron capture therapy with a new boron-porphyrin compound was tested in a rat brain tumor model . Although the concentration of boron in the tumor was too low to elicit a therapeutic effect, prominent histopathologic changes, such as necrosis, congestion and bleeding were observed in the tumors of the rats administered the boron neutron capture therapy
- …
