3,055 research outputs found
Stability, Structure and Scale: Improvements in Multi-modal Vessel Extraction for SEEG Trajectory Planning
Purpose Brain vessels are among the most critical landmarks that need to be assessed for mitigating surgical risks in stereo-electroencephalography (SEEG) implantation. Intracranial haemorrhage is the most common complication associated with implantation, carrying signi cant associated morbidity. SEEG planning is done pre-operatively to identify avascular trajectories for the electrodes. In current practice, neurosurgeons have no assistance in the planning of electrode trajectories. There is great interest in developing computer assisted planning systems that can optimise the safety pro le of electrode trajectories, maximising the distance to critical structures. This paper presents a method that integrates the concepts of scale, neighbourhood structure and feature stability with the aim of improving robustness and accuracy of vessel extraction within a SEEG planning system. Methods The developed method accounts for scale and vicinity of a voxel by formulating the problem within a multi-scale tensor voting framework. Feature stability is achieved through a similarity measure that evaluates the multi-modal consistency in vesselness responses. The proposed measurement allows the combination of multiple images modalities into a single image that is used within the planning system to visualise critical vessels. Results Twelve paired datasets from two image modalities available within the planning system were used for evaluation. The mean Dice similarity coe cient was 0.89 ± 0.04, representing a statistically signi cantly improvement when compared to a semi-automated single human rater, single-modality segmentation protocol used in clinical practice (0.80 ±0.03). Conclusions Multi-modal vessel extraction is superior to semi-automated single-modality segmentation, indicating the possibility of safer SEEG planning, with reduced patient morbidity
Development of a fretting-fatigue mapping concept: The effect of material properties and surface treatments
Fretting-fatigue induced by combined localized cyclic contact motion and external bulk fatigue loadings may result in premature and dramatic failure of the contacting components. Depending on fretting and fatigue loading conditions, crack nucleation and possibly crack propagation can be activated. This paper proposes a procedure for estimating these two damage thresholds. The crack nucleation boundary is formalized by applying the Crossland high cycle fatigue criterion, taking into account the stress gradient and the ensuing #size##effect#. The prediction of the crack propagation condition is formalized using a short crack arrest description. Applied to an AISI 1034 steel, this methodology allows the development of an original material response fretting-fatigue map (FFM). The impact of material properties and surface treatments is investigated
Behaviour of shot peening combined with WC-Co HVOF coating under complex fretting wear and fretting fatigue loading conditions
This study investigated the fretting and fretting fatigue performance of tungsten carbide–cobalt (WC–Co) HVOF spray coating systems. Fretting wear and fretting fatigue tests of specimens with shot peening and WC–Co coatings on 30NiCrMo substrates were conducted. The WC-Co coating presents very good wear resistance and decreases by more than 9 times the energy wear coefficient (α) under fretting conditions. The tested coating reduces crack nucleation under both fretting and fretting fatigue studied situations. Finally the crack arrest conditions are evaluated by the combined fretting and fretting fatigue investigation. It is shown and explained how and why this combined surface treatment (shot peening and WC–Co) presents a very good compromise against wear and cracking fretting damage
The evolution of interdisciplinarity in physics research
Science, being a social enterprise, is subject to fragmentation into groups
that focus on specialized areas or topics. Often new advances occur through
cross-fertilization of ideas between sub-fields that otherwise have little
overlap as they study dissimilar phenomena using different techniques. Thus to
explore the nature and dynamics of scientific progress one needs to consider
the large-scale organization and interactions between different subject areas.
Here, we study the relationships between the sub-fields of Physics using the
Physics and Astronomy Classification Scheme (PACS) codes employed for
self-categorization of articles published over the past 25 years (1985-2009).
We observe a clear trend towards increasing interactions between the different
sub-fields. The network of sub-fields also exhibits core-periphery
organization, the nucleus being dominated by Condensed Matter and General
Physics. However, over time Interdisciplinary Physics is steadily increasing
its share in the network core, reflecting a shift in the overall trend of
Physics research.Comment: Published version, 10 pages, 8 figures + Supplementary Informatio
cyTRON and cyTRON/JS: two Cytoscape-based applications for the inference of cancer evolution models
The increasing availability of sequencing data of cancer samples is fueling
the development of algorithmic strategies to investigate tumor heterogeneity
and infer reliable models of cancer evolution. We here build up on previous
works on cancer progression inference from genomic alteration data, to deliver
two distinct Cytoscape-based applications, which allow to produce, visualize
and manipulate cancer evolution models, also by interacting with public genomic
and proteomics databases. In particular, we here introduce cyTRON, a
stand-alone Cytoscape app, and cyTRON/JS, a web application which employs the
functionalities of Cytoscape/JS.
cyTRON was developed in Java; the code is available at
https://github.com/BIMIB-DISCo/cyTRON and on the Cytoscape App Store
http://apps.cytoscape.org/apps/cytron. cyTRON/JS was developed in JavaScript
and R; the source code of the tool is available at
https://github.com/BIMIB-DISCo/cyTRON-js and the tool is accessible from
https://bimib.disco.unimib.it/cytronjs/welcome
Percutaneous Device Closure of a Large Aortic Root Graft Pseudoaneurysm Using 3-Dimensional Transesophageal Echocardiographic Guidance
Navigability is a Robust Property
The Small World phenomenon has inspired researchers across a number of
fields. A breakthrough in its understanding was made by Kleinberg who
introduced Rank Based Augmentation (RBA): add to each vertex independently an
arc to a random destination selected from a carefully crafted probability
distribution. Kleinberg proved that RBA makes many networks navigable, i.e., it
allows greedy routing to successfully deliver messages between any two vertices
in a polylogarithmic number of steps. We prove that navigability is an inherent
property of many random networks, arising without coordination, or even
independence assumptions
A Doppler-Cancellation Technique for Determining the Altitude Dependence of Gravitational Red Shift in an Earth Satellite
A cancellation technique permits measurement of the frequency of a source moving relative to an observer without the obscuring effect of first-order Doppler shifts. The application of this method to a gravitational red shift experiment involving the use of an earth satellite containing a highly stable oscillator is described. The rapidity with which a measurement can be made permits the taking of data at various altitudes in a given elliptical orbit. Tropospheric and ionospheric effects upon the accuracy of results are estimated
Realistic searches on stretched exponential networks
We consider navigation or search schemes on networks which have a degree
distribution of the form . In addition, the
linking probability is taken to be dependent on social distances and is
governed by a parameter . The searches are realistic in the sense that
not all search chains can be completed. An estimate of , where
is the success rate and the dynamic path length, shows that for a
network of nodes, in general. Dynamic small world
effect, i.e., is shown to exist in a restricted region of the
plane.Comment: Based on talk given in Statphys Guwahati, 200
A reaction-diffusion model for the growth of avascular tumor
A nutrient-limited model for avascular cancer growth including cell
proliferation, motility and death is presented. The model qualitatively
reproduces commonly observed morphologies for primary tumors, and the simulated
patterns are characterized by its gyration radius, total number of cancer
cells, and number of cells on tumor periphery. These very distinct
morphological patterns follow Gompertz growth curves, but exhibit different
scaling laws for their surfaces. Also, the simulated tumors incorporate a
spatial structure composed of a central necrotic core, an inner rim of
quiescent cells and a narrow outer shell of proliferating cells in agreement
with biological data. Finally, our results indicate that the competition for
nutrients among normal and cancer cells may be a determinant factor in
generating papillary tumor morphology.Comment: 9 pages, 6 figures, to appear in PR
- …
