925 research outputs found

    Systematic derivation of a surface polarization model for planar perovskite solar cells

    Get PDF
    Increasing evidence suggests that the presence of mobile ions in perovskite solar cells can cause a current-voltage curve hysteresis. Steady state and transient current-voltage characteristics of a planar metal halide CH3_3NH3_3PbI3_3 perovskite solar cell are analysed with a drift-diffusion model that accounts for both charge transport and ion vacancy motion. The high ion vacancy density within the perovskite layer gives rise to narrow Debye layers (typical width \sim2nm), adjacent to the interfaces with the transport layers, over which large drops in the electric potential occur and in which significant charge is stored. Large disparities between (I) the width of the Debye layers and that of the perovskite layer (\sim600nm) and (II) the ion vacancy density and the charge carrier densities motivate an asymptotic approach to solving the model, while the stiffness of the equations renders standard solution methods unreliable. We derive a simplified surface polarisation model in which the slow ion dynamic are replaced by interfacial (nonlinear) capacitances at the perovskite interfaces. Favourable comparison is made between the results of the asymptotic approach and numerical solutions for a realistic cell over a wide range of operating conditions of practical interest.Comment: 32 pages, 7 figure

    Phenothiazinium photosensitisers XI. Improved toluidine blue photoantimicrobials.

    Get PDF
    The phenothiazinium derivative toluidine blue O (TBO) is widely employed as a photoantimicrobial agent in clinical trialling, particularly in dentistry. However, its activity against a range of pathogenic microbial species is not significantly different to that of the standard photoantimicrobial methylene blue. In the current study, derivatives of TBO with varying hydrocarbon substitution in chromophore position 2 were synthesised via the established anilinethiosulphonic route, using the mild oxidant silver(II) carbonate to allow substituent preservation. The resulting series of analogues demonstrated the expected increases in visible absorption wavelength and lipophilicity with increasing hydrocarbon content, as well as decreased aggregation for derivatives with bulkier substituents, and all produced singlet oxygen on illumination in vitro. Screening against a range of bacterial and fungal pathogens relevant to infection control showed remarkable increases in activity relative to the parent compound, particularly against the clinically important Gram-negative bacterium Pseudomonas aeruginosa. In addition, in order to demonstrate clinical relevance, the photoactivities of the new derivatives against microbial targets were compared to conventional antibacterial and antifungal drugs, as well as biocides commonly used for local disinfection. Activity here was also generally greater than that of the conventional agents used for comparison, considerably so relative to the local disinfectant agents

    Young children's research: children aged 4-8 years finding solutions at home and at school

    Get PDF
    Children's research capacities have become increasingly recognised by adults, yet children remain excluded from the academy, with reports of their research participation generally located in adults' agenda. Such practice restricts children's freedom to make choices in matters affecting them, underestimates children’s capabilities and denies children particular rights. The present paper reports on one aspect of a small-scale critical ethnographic study adopting a constructivist grounded approach to conceptualise ways in which children's naturalistic behaviours may be perceived as research. The study builds on multi-disciplinary theoretical perspectives, embracing 'new' sociology, psychology, economics, philosophy and early childhood education and care (ECEC). Research questions include: 'What is the nature of ECEC research?' and 'Do children’s enquiries count as research?' Initially, data were collected from the academy: professional researchers (n=14) confirmed 'finding solutions' as a research behaviour and indicated children aged 4-8 years, their practitioners and primary carers as 'theoretical sampling'. Consequently, multi-modal case studies were constructed with children (n=138) and their practitioners (n=17) in three ‘good’ schools, with selected children and their primary carers also participating at home. This paper reports on data emerging from children aged 4-8 years at school (n=17) and at home (n=5). Outcomes indicate that participating children found diverse solutions to diverse problems, some of which they set themselves. Some solutions engaged children in high order thinking, whilst others did not; selecting resources and trialing activities engaged children in 'finding solutions'. Conversely, when children's time, provocations and activities were directed by adults, the quality of their solutions was limited, they focused on pleasing adults and their motivation to propose solutions decreased. In this study, professional researchers recognised 'finding solutions' as research behaviour and children aged 4-8 years naturalistically presented with capacities for finding solutions; however, the children's encounters with adults affected the solutions they found

    The scale of population structure in Arabidopsis thaliana

    Get PDF
    The population structure of an organism reflects its evolutionary history and influences its evolutionary trajectory. It constrains the combination of genetic diversity and reveals patterns of past gene flow. Understanding it is a prerequisite for detecting genomic regions under selection, predicting the effect of population disturbances, or modeling gene flow. This paper examines the detailed global population structure of Arabidopsis thaliana. Using a set of 5,707 plants collected from around the globe and genotyped at 149 SNPs, we show that while A. thaliana as a species self-fertilizes 97% of the time, there is considerable variation among local groups. This level of outcrossing greatly limits observed heterozygosity but is sufficient to generate considerable local haplotypic diversity. We also find that in its native Eurasian range A. thaliana exhibits continuous isolation by distance at every geographic scale without natural breaks corresponding to classical notions of populations. By contrast, in North America, where it exists as an exotic species, A. thaliana exhibits little or no population structure at a continental scale but local isolation by distance that extends hundreds of km. This suggests a pattern for the development of isolation by distance that can establish itself shortly after an organism fills a new habitat range. It also raises questions about the general applicability of many standard population genetics models. Any model based on discrete clusters of interchangeable individuals will be an uneasy fit to organisms like A. thaliana which exhibit continuous isolation by distance on many scales

    Tuberculosis immunopathology: the neglected role of extracellular matrix destruction

    No full text
    The extracellular matrix in the lung must be destroyed for Mycobacterium tuberculosis—the agent that causes tuberculosis (TB)—to spread. The current paradigm proposes that this destruction occurs as a result of the action of proinflammatory cytokines, chemokines, immune cells, and lipids that mediate TB-associated necrosis in the lung. However, this view neglects the fact that lung matrix can only be degraded by proteases. We propose an original conceptual framework of TB immunopathology that may lead directly to treatments that involve inhibition of matrix metalloproteinase activity to hinder matrix destruction and reduce the morbidity and mortality associated with T

    A tractable inhomogeneous closure theory for flow over mean topography

    Get PDF
    The quasi-diagonal direct interaction approximation (QDIA) is shown to be a computationally tractable closure theory for inhomogeneous two-dimensional turbulent flow over mean (single-realization) topography. In this paper numerical results for the QDIA are compared to direct numerical simulation (DNS) at moderate Reynolds number for two cases with quite different topographic and mean field amplitudes. The QDIA is found to be in excellent agreement with DNS for cases where the small-scale topographic amplitude is significant. For cases where the small-scale topography is weak, the QDIA closely reproduces the evolving mean field and large-scale energy containing transients but under represents the amplitudes of the small-scale transients in a similar way to the homogeneous DIA. We discuss the prospects of ameliorating the small-scale deficiencies using a regularization of the interaction coefficients

    Turbulence and Rossby Wave Dynamics with Realizable Eddy Damped Markovian Anisotropic Closure

    Full text link
    The theoretical basis for the Eddy Damped Markovian Anisotropic Closure (EDMAC) is formulated for two-dimensional anisotropic turbulence interacting with Rossby waves in the presence of advection by a large-scale mean flow. The EDMAC is as computationally efficient as the Eddy Damped Quasi Normal Markovian (EDQNM) closure but in contrast is realizable in the presence of transient waves. The EDMAC is arrived at through systematic simplification of a generalization of the non-Markovian Direct Interaction Approximation (DIA) closure that has its origin in renormalized perturbation theory. Markovian Anisotropic Closures (MACs) are obtained from the DIA by using three variants of the Fluctuation Dissipation Theorem (FDT) with the information in the time history integrals instead carried by Markovian differential equations for two relaxation functions. One of the MACs is simplified to the EDMAC with analytical relaxation functions and high numerical efficiency, like the EDQNM. Sufficient conditions for the EDMAC to be realizable in the presence of Rossby waves are determined. Examples of the numerical integration of the EDMAC compared with the EDQNM are presented for two-dimensional isotropic and anisotropic turbulence, at moderate Reynolds numbers, possibly interacting with Rossby waves and large-scale mean flow. The generalization of the EDMAC for the statistical dynamics of other physical systems, to higher dimension and higher order nonlinearity is considered.Comment: 29 pages, 2 figure

    Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: II Mechanisms

    Get PDF
    Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information
    corecore