18 research outputs found
Collaborative creativity: The Music Room
In this paper, we reflect on our experience of designing, developing and evaluating interactive spaces for collaborative creativity. In particular, we are interested in designing spaces which allow everybody to compose and play original music. The Music Room is an interactive installation where couples can compose original music by moving in the space. Following the metaphor of love, the music is automatically generated and modulated in terms of pleasantness and intensity, according to the proxemics cues extracted from the visual tracking algorithm. The Music Room was exhibited during the EU Researchers' Night in Trento, Italy
Intelligent Approach for Analysis of 3D Digitalization of Planer Objects for Visually Impaired People
Visual, tangible, and touch-screen: Comparison of platforms for displaying simple graphics
AUDiaL: A Natural Language Interface to Make Statistical Charts Accessible to Blind Persons
Experimental evaluation of three interaction channels for accessible digital musical instruments
Accessible Digital Musical instruments (ADMIs) dedicated to people with motor disabilities represent a relevant niche in accessibility research. The designer is often required to exploit unconventional physical interaction channels, different from hands and fingers. Although comprehensive evaluation methods for Digital Musical Instruments in general are found in literature, little has been done both in ADMIs evaluation and the analysis of suitable interaction channels from a Human-Computer Interaction perspective. In this work the performance of breath, gaze pointing and head movements is analyzed, in terms of movement speed and stability, through a simple experiment. These interaction channels could be exploited in the design of ADMIs dedicated to quadriplegic musicians. The proposed experiment has similarities with past Fitts Law evaluation tests. Results are discussed proposing possible mappings between channels and musical performance parameters. These results could also be useful to inform the design of different interface types
Touchscreen-Based Haptic Information Access for Assisting Blind and Visually-Impaired Users: Perceptual Parameters and Design Guidelines
A Proton-Cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind
We use audification of 0.092 seconds cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes greater than 0.1 nanoteslas near the ion gyrofrequency (approximately 0.1 hertz) with duration longer than 1 hour during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona
