168 research outputs found
Risk Lovers, Mixed Risk Loving And The Preference To Combine Good With Good
Axe OrganisationsInternational audienceThis paper examines the concept of 'risk loving' (that is risk seeking, intemperance, edginess, etc.), which can be characterised by preferences over simple lotteries. This paper analyses the notion of preferring to combine good with good, and bad with bad, as opposed to combining good with bad as usual. The significance of such preferences has implications on utility functions and are analysed in the paper. This paper extends Eeckhoudt and Schlesinger (2006) results to risk lovers, the results from Crainich et al. (2013) are also generalised to higher orders. We also generalise to higher orders the concept of bivariate risk seeking, introduced by Richard (1975) and called correlation loving by Epstein and Tanny (1980). In the expected utility framework, risk loving of order (N, M) coincides with the non-negativity of the (N, M)th partial derivative of the utility function. In dealing with mixed risk loving utility functions, we give several useful properties, for example, mixed risk loving is consistent with the mixture of positive exponential utilities and with non-increasing coefficients of absolute risk aversion at any order
Complement-mediated enhancement of SARS-CoV-2 antibody neutralisation potency in vaccinated individuals
With the continued emergence of SARS-CoV-2 variants and concerns of waning immunity, there is a need for better defined correlates of protection to aid future vaccine and therapeutic developments. Whilst neutralising antibody titres are associated with protection, these are typically determined in the absence of the complement system, which has the potential to enhance neutralisation titres and strengthen correlates with protection in vivo. Here we show that replenishment of the complement system in neutralisation assays can significantly enhance neutralisation titres, with up to an ~83-fold increase in neutralisation of the BA.1.1.529 strain using cross-reactive sera from vaccination against the ancestral strain. The magnitude of enhancement significantly varies between individuals, viral strains (wild-type/VIC01 and Omicron/BA.1), and cell lines (Vero E6 and Calu-3), and is abrogated following heat-inactivation of the complement source. Utilising ACE2 competition assays, we show that the mechanism of action is partially mediated by reducing ACE2-spike interactions. Through the addition of compstatin (a C3 inhibitor) to live virus neutralisation assays, the complement protein C3 is shown to be required for maximum efficiency. These findings further our understanding of SARS-CoV-2 immunity and neutralisation, with implications for protection against emerging variants and assessing future vaccine and therapeutic developments
Immunogenicity of third dose COVID-19 vaccine strategies in patients who are immunocompromised with suboptimal immunity following two doses (OCTAVE-DUO): an open-label, multicentre, randomised, controlled, phase 3 trial
BACKGROUND: The humoral and T-cell responses to booster COVID-19 vaccine types in multidisease immunocompromised individuals who do not generate adequate antibody responses to two COVID-19 vaccine doses, is not fully understood. The OCTAVE DUO trial aimed to determine the value of third vaccinations in a wide range of patients with primary and secondary immunodeficiencies. METHODS: OCTAVE-DUO was a prospective, open-label, multicentre, randomised, controlled, phase 3 trial investigating humoral and T-cell responses in patients who are immunocompromised following a third vaccine dose with BNT162b2 or mRNA-1273, and of NVX-CoV2373 for those with lymphoid malignancies. We recruited patients who were immunocompromised from 11 UK hospitals, aged at least 18 years, with previous sub-optimal responses to two doses of SARS-CoV-2 vaccine. Participants were randomly assigned 1:1 (1:1:1 for those with lymphoid malignancies), stratified by disease, previous vaccination type, and anti-spike antibody response following two doses. Individuals with lived experience of immune susceptibility were involved in the study design and implementation. The primary outcome was vaccine-specific immunity defined by anti-SARS-CoV-2 spike antibodies (Roche Diagnostics UK and Ireland, Burgess Hill, UK) and T-cell responses (Oxford Immunotec, Abingdon, UK) before and 21 days after the third vaccine dose analysed by a modified intention-to-treat analysis. The trial is registered with the ISRCTN registry, ISRCTN 15354495, and the EU Clinical Trials Register, EudraCT 2021-003632-87, and is complete. FINDINGS: Between Aug 4, 2021 and Mar 31, 2022, 804 participants across nine disease cohorts were randomly assigned to receive BNT162b2 (n=377), mRNA-1273 (n=374), or NVX-CoV2373 (n=53). 356 (45%) of 789 participants were women, 433 (55%) were men, and 659 (85%) of 775 were White. Anti-SARS-CoV-2 spike antibodies measured 21 days after the third vaccine dose were significantly higher than baseline pre-third dose titres in the modified intention-to-treat analysis (median 1384 arbitrary units [AU]/mL [IQR 4·3-7990·0] compared with median 11·5 AU/mL [0·4-63·1]; p<0·001). Of participants who were baseline low responders, 380 (90%) of 423 increased their antibody concentrations to more than 400 AU/mL. Conversely, 166 (54%) of 308 baseline non-responders had no response after the third dose. Detectable T-cell responses following the third vaccine dose were seen in 494 (80%) of 616 participants. There were 24 serious adverse events (BNT612b2 eight [33%] of 24, mRNA-1273 12 [50%], NVX-CoV2373 four [17%]), two (8%) of which were categorised as vaccine-related. There were seven deaths (1%) during the trial, none of which were vaccine-related. INTERPRETATION: A third vaccine dose improved the serological and T-cell response in the majority of patients who are immunocompromised. Individuals with chronic renal disease, lymphoid malignancy, on B-cell targeted therapies, or with no serological response after two vaccine doses are at higher risk of poor response to a third vaccine dose. FUNDING: Medical Research Council, Blood Cancer UK
A connectome and analysis of the adult Drosophila central brain
The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly’s brain
Greater preservation of SARS-CoV-2 neutralising antibody responses following the ChAdOx1-S (AZD1222) vaccine compared with mRNA vaccines in haematopoietic cell transplant recipients.
Whilst SARS-CoV-2 mRNA vaccines generate high neutralising antibodies (nAb) in most individuals, haematopoietic stem cell transplant (HSCT) and chimeric antigen receptor T-cell (CAR-T) recipients respond poorly. HSCT/CAR-T treatment ablates existing immune memory, with recipients requiring revaccination analogous to being vaccine naive. An optimal revaccination strategy for this cohort has not been defined. Factors predicting immunogenicity following three ancestral SARS-CoV-2 vaccines were assessed in 198 HSCT/CAR-T recipients and 96 healthcare workers (HCWs) recruited to multicentre studies. Only 25% of HSCT/CAR-T recipients generated nAbs following one dose, with titres 167-fold and 7-fold lower than that in HCWs after the first and second doses, respectively. Lower post-second dose nAb titres were associated with older age, rituximab use, and previous HSCT. ChAdOx1-S recipients were more likely to generate nAbs compared with mRNA vaccines, with titres comparable to HCWs. In contrast, nAbs were significantly lower in HSCT/CAR-T recipients than HCWs after mRNA vaccination. The poor first-dose immunogenicity in HSCT/CAR-T recipients suggests a minimum licensed dosing interval could limit the period of vulnerability following HSCT/CAR-T. The relative preservation of nAbs with ChAdOx1-S vaccination highlights the importance of evaluating alternative platforms to mRNA vaccination within this highly vulnerable clinical cohort
Amyloid β peptide-induced inhibition of endothelial nitric oxide production involves oxidative stress-mediated constitutive eNOS/HSP90 interaction and disruption of agonist-mediated Akt activation
Recommended from our members
Immunogenicity of third dose COVID-19 vaccine strategies in patients who are immunocompromised with suboptimal immunity following two doses (OCTAVE-DUO): an open-label, multicentre, randomised, controlled, phase 3 trial.
BACKGROUND: The humoral and T-cell responses to booster COVID-19 vaccine types in multidisease immunocompromised individuals who do not generate adequate antibody responses to two COVID-19 vaccine doses, is not fully understood. The OCTAVE DUO trial aimed to determine the value of third vaccinations in a wide range of patients with primary and secondary immunodeficiencies. METHODS: OCTAVE-DUO was a prospective, open-label, multicentre, randomised, controlled, phase 3 trial investigating humoral and T-cell responses in patients who are immunocompromised following a third vaccine dose with BNT162b2 or mRNA-1273, and of NVX-CoV2373 for those with lymphoid malignancies. We recruited patients who were immunocompromised from 11 UK hospitals, aged at least 18 years, with previous sub-optimal responses to two doses of SARS-CoV-2 vaccine. Participants were randomly assigned 1:1 (1:1:1 for those with lymphoid malignancies), stratified by disease, previous vaccination type, and anti-spike antibody response following two doses. Individuals with lived experience of immune susceptibility were involved in the study design and implementation. The primary outcome was vaccine-specific immunity defined by anti-SARS-CoV-2 spike antibodies (Roche Diagnostics UK and Ireland, Burgess Hill, UK) and T-cell responses (Oxford Immunotec, Abingdon, UK) before and 21 days after the third vaccine dose analysed by a modified intention-to-treat analysis. The trial is registered with the ISRCTN registry, ISRCTN 15354495, and the EU Clinical Trials Register, EudraCT 2021-003632-87, and is complete. FINDINGS: Between Aug 4, 2021 and Mar 31, 2022, 804 participants across nine disease cohorts were randomly assigned to receive BNT162b2 (n=377), mRNA-1273 (n=374), or NVX-CoV2373 (n=53). 356 (45%) of 789 participants were women, 433 (55%) were men, and 659 (85%) of 775 were White. Anti-SARS-CoV-2 spike antibodies measured 21 days after the third vaccine dose were significantly higher than baseline pre-third dose titres in the modified intention-to-treat analysis (median 1384 arbitrary units [AU]/mL [IQR 4·3-7990·0] compared with median 11·5 AU/mL [0·4-63·1]; p<0·001). Of participants who were baseline low responders, 380 (90%) of 423 increased their antibody concentrations to more than 400 AU/mL. Conversely, 166 (54%) of 308 baseline non-responders had no response after the third dose. Detectable T-cell responses following the third vaccine dose were seen in 494 (80%) of 616 participants. There were 24 serious adverse events (BNT612b2 eight [33%] of 24, mRNA-1273 12 [50%], NVX-CoV2373 four [17%]), two (8%) of which were categorised as vaccine-related. There were seven deaths (1%) during the trial, none of which were vaccine-related. INTERPRETATION: A third vaccine dose improved the serological and T-cell response in the majority of patients who are immunocompromised. Individuals with chronic renal disease, lymphoid malignancy, on B-cell targeted therapies, or with no serological response after two vaccine doses are at higher risk of poor response to a third vaccine dose. FUNDING: Medical Research Council, Blood Cancer UK
SARS-CoV-2-specific immune responses and clinical outcomes after COVID-19 vaccination in patients with immune-suppressive disease
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune responses and infection outcomes were evaluated in 2,686 patients with varying immune-suppressive disease states after administration of two Coronavirus Disease 2019 (COVID-19) vaccines. Overall, 255 of 2,204 (12%) patients failed to develop anti-spike antibodies, with an additional 600 of 2,204 (27%) patients generating low levels (<380 AU ml−1). Vaccine failure rates were highest in ANCA-associated vasculitis on rituximab (21/29, 72%), hemodialysis on immunosuppressive therapy (6/30, 20%) and solid organ transplant recipients (20/81, 25% and 141/458, 31%). SARS-CoV-2-specific T cell responses were detected in 513 of 580 (88%) patients, with lower T cell magnitude or proportion in hemodialysis, allogeneic hematopoietic stem cell transplantation and liver transplant recipients (versus healthy controls). Humoral responses against Omicron (BA.1) were reduced, although cross-reactive T cell responses were sustained in all participants for whom these data were available. BNT162b2 was associated with higher antibody but lower cellular responses compared to ChAdOx1 nCoV-19 vaccination. We report 474 SARS-CoV-2 infection episodes, including 48 individuals with hospitalization or death from COVID-19. Decreased magnitude of both the serological and the T cell response was associated with severe COVID-19. Overall, we identified clinical phenotypes that may benefit from targeted COVID-19 therapeutic strategies
- …
