2,710 research outputs found

    Future Directions in Machine Learning

    Get PDF

    Two regularizations - two different models of Nambu-Jona-Lasinio

    Full text link
    Two variants of the Nambu--Jona-Lasinio model -- the model with 4-dimensional cutoff and the model with dimensionally-analytical regularization -- are systematically compared. It is shown that they are, in essence, two different models of light-quark interaction. In the mean-field approximation the distinction becomes apparent in a behavior of scalar amplitude near the threshold. For 4-dimensional cutoff the pole term can be extracted, which corresponds to sigma-meson. For dimensionally-analytical regularization the singularity of the scalar amplitude is not pole, and this singularity is quite disappeared at some value of the regularization parameter. Still more essential distinction of these models exists in the next-to-leading order of mean-field expansion. The calculations of meson contributions in the quark chiral condensate and in the dynamical quark mass demonstrate, that these contributions though their relatively smallness can destabilize the Nambu--Jona-Lasinio model with 4-dimensional cutoff. On the contrary, the Nambu--Jona-Lasinio model with dimensionally-analytical regularization is stabilized with the next-to-leading order, i.e. the value of the regularization parameter shifts to the stability region, where these contributions decrease.Comment: 14 pages; Journal version; parameter fixing procedure is modifie

    Spin-orbit fields in asymmetric (001)-oriented GaAs/AlxGa 1-xAs quantum wells

    Get PDF
    We measure simultaneously the in-plane electron g factor and spin-relaxation rate in a series of undoped inversion-asymmetric (001)-oriented GaAs/AlGaAs quantum wells by spin-quantum beat spectroscopy. In combination the two quantities reveal the absolute values of both the Rashba and the Dresselhaus coefficients and prove that the Rashba coefficient can be negligibly small despite huge conduction-band potential gradients which break the inversion symmetry. The negligible Rashba coefficient is a consequence of the "isomorphism" of conduction- and valence-band potentials in quantum systems where the asymmetry is solely produced by alloy variations. © 2011 American Physical Society

    Meson loop effects in the NJL model at zero and non-zero temperature

    Full text link
    We compare two different possibilities to include meson-loop corrections in the Nambu-Jona-Lasinio model: a strict 1/N_c-expansion in next-to-leading order and a non-perturbative scheme corresponding to a one-meson-loop approximation to the effective action. Both schemes are consistent with chiral symmetry, in particular with the Goldstone theorem and the Gell-Mann-Oakes-Renner relation. The numerical part at zero temperature focuses on the pion and the rho-meson sector. For the latter the meson-loop-corrections are crucial in order to include the dominant rho -> pipi-decay channel, while the standard Hartree + RPA approximation only contains unphysical qqbar-decay channels. We find that m_\pi, f_\pi, and quantities related to the rho-meson self-energy can be described reasonably with one parameter set in the 1/N_c-expansion scheme, whereas we did not succeed to obtain such a fit in the non-perturbative scheme. We also investigate the temperature dependence of the quark condensate. Here we find consistency with chiral perturbation theory to lowest order. Similarities and differences of both schemes are discussed.Comment: 51 pages, 18 figures, to be published in Physics of Atomic Nuclei, the volume dedicated to the 90th birthday of A.B. Migdal, error in Eq. 4.22 correcte

    On the influence of Stark broadening on Si I lines in stellar atmospheres

    Full text link
    We study the influence of Stark broadening and stratification effects on Si\i lines in the rapidly oscillating (roAp) star 10 Aql, where the Si\i 6142.48 \AA and 6155.13 \AA lines are asymmetrical and shifted. First we have calculated Stark broadening parameters using the semiclassical perturbation method for three Si\i lines: 5950.2 \AA, 6142.48 \AA and 6155.13 \AA. We revised the synthetic sp$ calculation code taking into account both Stark width and shift for these lines. From the comparison of our calculations with the observations we found that Stark broadening + the stratification effect can explain asymmetry of the Si\i 6142.48 \AA and 6155.13 \AA lines in the atmospere of roAp star 10 Aql.Comment: Accepted to A&

    A Cosmic Census of Radio Pulsars with the SKA

    Get PDF
    The Square Kilometre Array (SKA) will make ground breaking discoveries in pulsar science. In this chapter we outline the SKA surveys for new pulsars, as well as how we will perform the necessary follow-up timing observations. The SKA's wide field-of-view, high sensitivity, multi-beaming and sub-arraying capabilities, coupled with advanced pulsar search backends, will result in the discovery of a large population of pulsars. These will enable the SKA's pulsar science goals (tests of General Relativity with pulsar binary systems, investigating black hole theorems with pulsar-black hole binaries, and direct detection of gravitational waves in a pulsar timing array). Using SKA1-MID and SKA1-LOW we will survey the Milky Way to unprecedented depth, increasing the number of known pulsars by more than an order of magnitude. SKA2 will potentially find all the Galactic radio-emitting pulsars in the SKA sky which are beamed in our direction. This will give a clear picture of the birth properties of pulsars and of the gravitational potential, magnetic field structure and interstellar matter content of the Galaxy. Targeted searches will enable detection of exotic systems, such as the ~1000 pulsars we infer to be closely orbiting Sgr A*, the supermassive black hole in the Galactic Centre. In addition, the SKA's sensitivity will be sufficient to detect pulsars in local group galaxies. To derive the spin characteristics of the discoveries we will perform live searches, and use sub-arraying and dynamic scheduling to time pulsars as soon as they are discovered, while simultaneously continuing survey observations. The large projected number of discoveries suggests that we will uncover currently unknown rare systems that can be exploited to push the boundaries of our understanding of astrophysics and provide tools for testing physics, as has been done by the pulsar community in the past.Comment: 20 pages, 7 figures, to be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14)04

    Hadronic unquenching effects in the quark propagator

    Full text link
    We investigate hadronic unquenching effects in light quarks and mesons. Within the non-perturbative continuum framework of Schwinger-Dyson and Bethe-Salpeter equations we quantify the strength of the back reaction of the pion onto the quark-gluon interaction. To this end we add a Yang-Mills part of the interaction such that unquenched lattice results for various current quark masses are reproduced. We find considerable effects in the quark mass function at low momenta as well as for the chiral condensate. The quark wave function is less affected. The Gell--Mann-Oakes-Renner relation is valid to good accuracy up to pion masses of 400-500 MeV. As a byproduct of our investigation we verify the Coleman theorem, that chiral symmetry cannot be broken spontaneously when QCD is reduced to 1+1 dimensions.Comment: 27 pages, 15 figures, minor corrections and clarifications; version to appear in PR

    Phase diagram of neutron-rich nuclear matter and its impact on astrophysics

    Full text link
    Dense matter as it can be found in core-collapse supernovae and neutron stars is expected to exhibit different phase transitions which impact the matter composition and equation of state, with important consequences on the dynamics of core-collapse supernova explosion and on the structure of neutron stars. In this paper we will address the specific phenomenology of two of such transitions, namely the crust-core solid-liquid transition at sub-saturation density, and the possible strange transition at super-saturation density in the presence of hyperonic degrees of freedom. Concerning the neutron star crust-core phase transition at zero and finite temperature, it will be shown that, as a consequence of the presence of long-range Coulomb interactions, the equivalence of statistical ensembles is violated and a clusterized phase is expected which is not accessible in the grand-canonical ensemble. A specific quasi-particle model will be introduced to illustrate this anomalous thermodynamics and some quantitative results relevant for the supernova dynamics will be shown. The opening of hyperonic degrees of freedom at higher densities corresponding to the neutron stars core modifies the equation of state. The general characteristics and order of phase transitions in this regime will be analyzed in the framework of a self-consistent mean-field approach.Comment: Invited Talk given at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Particle dynamics of a cartoon dune

    Get PDF
    The spatio-temporal evolution of a downsized model for a desert dune is observed experimentally in a narrow water flow channel. A particle tracking method reveals that the migration speed of the model dune is one order of magnitude smaller than that of individual grains. In particular, the erosion rate consists of comparable contributions from creeping (low energy) and saltating (high energy) particles. The saltation flow rate is slightly larger, whereas the number of saltating particles is one order of magnitude lower than that of the creeping ones. The velocity field of the saltating particles is comparable to the velocity field of the driving fluid. It can be observed that the spatial profile of the shear stress reaches its maximum value upstream of the crest, while its minimum lies at the downstream foot of the dune. The particle tracking method reveals that the deposition of entrained particles occurs primarily in the region between these two extrema of the shear stress. Moreover, it is demonstrated that the initial triangular heap evolves to a steady state with constant mass, shape, velocity, and packing fraction after one turnover time has elapsed. Within that time the mean distance between particles initially in contact reaches a value of approximately one quarter of the dune basis length
    corecore