1,548 research outputs found

    Gamma-Ray Burst Phenomenon as Collapse of QED Magnetized Vacuum Bubble: Analogy with Sonoluminescence

    Full text link
    We consider the phenomenon of a gamma-ray burst as a nonlinear collapse of a magnetic cavity surrounding a neutron star with very strong magnetic field B = 10^15 - 10^16 G due to the process of the bubble shape instability in a resonant MHD field of the accreting plasma. The QED effect of vacuum polarizability by the strong magnetic field is taken into account. We develop an analogy with the phenomenon of sonoluminescence (SL) when the gas bubble is located in the surrounding liquid with a driven sound intensity. We show that this analogy between GRB and SL phenomena really exists.Comment: 14 pages, submitted to Natur

    Algebraic approach to quantum field theory on a class of noncommutative curved spacetimes

    Full text link
    In this article we study the quantization of a free real scalar field on a class of noncommutative manifolds, obtained via formal deformation quantization using triangular Drinfel'd twists. We construct deformed quadratic action functionals and compute the corresponding equation of motion operators. The Green's operators and the fundamental solution of the deformed equation of motion are obtained in terms of formal power series. It is shown that, using the deformed fundamental solution, we can define deformed *-algebras of field observables, which in general depend on the spacetime deformation parameter. This dependence is absent in the special case of Killing deformations, which include in particular the Moyal-Weyl deformation of the Minkowski spacetime.Comment: LaTeX 14 pages, no figures, svjour3.cls style; v2: clarifications and references added, compatible with published versio

    A Completely Invariant SUSY Transform of Supersymmetric QED

    Full text link
    We study the SUSY breaking of the covariant gauge-fixing term in SUSY QED and observe that this corresponds to a breaking of the Lorentz gauge condition by SUSY. Reasoning by analogy with SUSY's violation of the Wess-Zumino gauge, we argue that the SUSY transformation, already modified to preserve Wess-Zumino gauge, should be further modified by another gauge transformation which restores the Lorentz gauge condition. We derive this modification and use the resulting transformation to derive a Ward identitiy relating the photon and photino propagators without using ghost fields. Our transformation also fulfills the SUSY algebra, modulo terms that vanish in Lorentz gauge

    Testing the Noncommutative Standard Model at a Future Photon Collider

    Full text link
    Extensions of the Standard Model of elementary particle physics to noncommutative geometries have been proposed as a low energy limit of string models. Independent of this motivation, one may consider such a model as an effective field theory with higher-dimensional operators containing an antisymmetric rank-two background field. We study the signals of such a Noncommutative Standard Model (NCSM) and analyze the discovery potential of a future photon collider, considering angular distributions in fermion pair production.Comment: 13 pages RevTeX, Feynman diagrams and figures included, references added, typographical errors in Feynman rules corrected (all results remain unchangend, since correct Feynman rules were used in the calculations), to appear in Phys. Rev.

    Beyond the iron group: heavy metals in hot subdwarfs

    Full text link
    We report the discovery of strong photospheric resonance lines of Ga III, Ge IV, Sn IV and Pb IV in the UV spectra of more than two dozen sdB and sdOB stars at temperatures ranging from 22000 K to 40000 K. Lines of other heavy elements are also detected, however in these cases more atomic data are needed. Based on these discoveries, we present a hypothesis to explain the apparent lack of silicon in sdB stars hotter than ~32000 K. The existence of triply ionised Ge, Sn, and Pb suggests that rather than silicon sinking deep into the photosphere, it is removed from the star in a fractionated stellar wind. This hypothesis provides a challenge to diffusion models of sdB stars.Comment: 5 pages, 3 figures, to appear in A&A Letter

    Magnetic neutron scattering study of YVO3: Evidence for an orbital Peierls state

    Get PDF
    Neutron spectroscopy has revealed a highly unusual magnetic structure and dynamics in YVO3_3, an insulating pseudocubic perovskite that undergoes a series of temperature induced phase transitions between states with different spin and orbital ordering patterns. A good description of the neutron data is obtained by a theoretical analysis of the spin and orbital correlations of a realistic one-dimensional model. This leads to the tentative identification of one of the phases of YVO3_3 with the ``orbital Peierls state'', a theoretically proposed many-body state comprised of orbital singlet bonds.Comment: final version, to appear in PR
    corecore