1,210 research outputs found
Strongly Correlated Cerium Systems: Non-Kondo Mechanism for Moment Collapse
We present an ab initio based method which gives clear insight into the
interplay between the hybridization, the coulomb exchange, and the
crystal-field interactions, as the degree of 4f localization is varied across a
series of strongly correlated cerium systems. The results for the ordered
magnetic moments, magnetic structure, and ordering temperatures are in
excellent agreement with experiment, including the occurence of a moment
collapse of non-Kondo origin. In contrast, standard ab initio density
functional calculations fail to predict, even qualitatively, the trend of the
unusual magentic properties.Comment: A shorter version of this has been submitted to PR
Anti-Allergic Cromones Inhibit Histamine and Eicosanoid Release from Activated Human and Murine Mast Cells by Releasing Annexin A1
PMCID: PMC3601088This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Sex-specific relevance of diabetes to occlusive vascular and other mortality : a collaborative meta-analysis of individual data from 980 793 adults from 68 prospective studies
Background: Several studies have shown that diabetes confers a higher relative risk of vascular mortality among women than among men, but whether this increased relative risk in women exists across age groups and within defined levels of other risk factors is uncertain. We aimed to determine whether differences in established risk factors, such as blood pressure, BMI, smoking, and cholesterol, explain the higher relative risks of vascular mortality among women than among men.
Methods: In our meta-analysis, we obtained individual participant-level data from studies included in the Prospective Studies Collaboration and the Asia Pacific Cohort Studies Collaboration that had obtained baseline information on age, sex, diabetes, total cholesterol, blood pressure, tobacco use, height, and weight. Data on causes of death were obtained from medical death certificates. We used Cox regression models to assess the relevance of diabetes (any type) to occlusive vascular mortality (ischaemic heart disease, ischaemic stroke, or other atherosclerotic deaths) by age, sex, and other major vascular risk factors, and to assess whether the associations of blood pressure, total cholesterol, and body-mass index (BMI) to occlusive vascular mortality are modified by diabetes.
Findings: Individual participant-level data were analysed from 980793 adults. During 9 center dot 8 million person-years of follow-up, among participants aged between 35 and 89 years, 19686 (25 center dot 6%) of 76965 deaths were attributed to occlusive vascular disease. After controlling for major vascular risk factors, diabetes roughly doubled occlusive vascular mortality risk among men (death rate ratio [RR] 2 center dot 10, 95% CI 1 center dot 97-2 center dot 24) and tripled risk among women (3 center dot 00, 2 center dot 71-3 center dot 33; x(2) test for heterogeneity p<0 center dot 0001). For both sexes combined, the occlusive vascular death RRs were higher in younger individuals (aged 35-59 years: 2 center dot 60, 2 center dot 30-2 center dot 94) than in older individuals (aged 70-89 years: 2 center dot 01, 1 center dot 85-2 center dot 19; p=0 center dot 0001 for trend across age groups), and, across age groups, the death RRs were higher among women than among men. Therefore, women aged 35-59 years had the highest death RR across all age and sex groups (5 center dot 55, 4 center dot 15-7 center dot 44). However, since underlying confounder-adjusted occlusive vascular mortality rates at any age were higher in men than in women, the adjusted absolute excess occlusive vascular mortality associated with diabetes was similar for men and women. At ages 35-59 years, the excess absolute risk was 0 center dot 05% (95% CI 0 center dot 03-0 center dot 07) per year in women compared with 0 center dot 08% (0 center dot 05-0 center dot 10) per year in men; the corresponding excess at ages 70-89 years was 1 center dot 08% (0 center dot 84-1 center dot 3 2) per year in women and 0 center dot 91% (0 center dot 77-1 center dot 05) per year in men. Total cholesterol, blood pressure, and BMI each showed continuous log-linear associations with occlusive vascular mortality that were similar among individuals with and without diabetes across both sexes.
Interpretation: Independent of other major vascular risk factors, diabetes substantially increased vascular risk in both men and women. Lifestyle changes to reduce smoking and obesity and use of cost-effective drugs that target major vascular risks (eg, statins and antihypertensive drugs) are important in both men and women with diabetes, but might not reduce the relative excess risk of occlusive vascular disease in women with diabetes, which remains unexplained
VAMP3/Syb and YKT6 are required for the fusion of constitutive secretory carriers with the plasma membrane
The cellular machinery required for the fusion of constitutive secretory vesicles with the plasma membrane in metazoans remains poorly defined. To address this problem we have developed a powerful, quantitative assay for measuring secretion and used it in combination with combinatorial gene depletion studies in Drosophila cells. This has allowed us to identify at least three SNARE complexes mediating Golgi to PM transport (STX1, SNAP24/29 and Syb; STX1, SNAP24/29 and YKT6; STX4, SNAP24 and Syb). RNAi mediated depletion of YKT6 and VAMP3 in mammalian cells also blocks constitutive secretion suggesting that YKT6 has an evolutionarily conserved role in this process. The unexpected role of YKT6 in plasma membrane fusion may in part explain why RNAi and gene disruption studies have failed to produce the expected phenotypes in higher eukaryotes
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Prostaglandin E2 Prevents Hyperosmolar-Induced Human Mast Cell Activation through Prostanoid Receptors EP2 and EP4
Background: Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle to cause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB. Objective: This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. Methods: We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP1-4 were assayed on the activated mast cells. Beta-hexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. Results: Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogen-activated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by beta-hexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 phosphorylation were diminished when compared with mannitol activation alone. Conclusions:Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition
Does sex matter in the associations between classic risk factors and fatal coronary heart disease in populations from the Asia-Pacific region?
Background: There is much interest in promoting healthy heart awareness among women. However, little is known about the reasons behind the lower rates of heart disease among women compared with men, and why this risk difference diminishes with age. Previous comparative studies have generally had insufficient numbers of women to quantify such differences reliably. Methods: We carried out an individual participant data meta-analysis of 39 cohort studies (32 from Asian countries and 7 from Australia and New Zealand). Cox models were used to estimate hazard ratios (HR) for coronary death, comparing men to women. Further adjustments were made for several proven coronary risk factors to quantify their contributions to the sex differential. Sex interactions were tested for the same risk factors. Results: During 4 million person-years of follow-up, there were 1989 (926 female) deaths from coronary heart disease (CHD). The age-adjusted and study-adjusted male/female HR (95% confidence interval [95% CI]) was 2.05 (1.89-2.22). At baseline, 54% of men vs. 7% of women were current smokers; hence, adjustment for smoking explained the largest component (20%) of this HR. A significant sex interaction was observed between systolic blood pressure (SBP) and CHD mortality such that a 10 mm Hg increase was associated with a 15% greater increase in the relative risk (RR) of coronary death in women compared with men (p = 0.002). Conclusions: Only a small amount of the sex differential in coronary death could be explained by differences in the prevalence of classic risk factors. Alternative explanations are required to explain the age-related attenuation of the sex difference in CHD risk. © Mary Ann Liebert, Inc.published_or_final_versio
Human chondrocytes in tridimensional culture.
peer reviewedCartilage was taken from the macroscopically normal part of human femoral heads immediately after orthopedic surgical operations for total prothesis consecutive to hip arthrosis. After clostridial collagenase digestion and repeated washings, chondrocytes (10(6) cells) were cultivated in a gyrotory shaker (100 rpm). Under these conditions, cells were kept in suspension and after 3 to 5 d formed a flaky aggregate which, on Day 10, became dense. These chondrocytes were morphologically differentiated: they had a round shape, were situated inside cavities, and were surrounded by a new matrix. Histochemical methods showed the presence of collagen and polysaccharides in cell cytoplasm and in intercellular matrix, and the immunofluorescence method using specific antisera (anticartilage proteoglycans and anti-type II collagen) showed that these two constituents were in intercellular matrix. The measurement of the amounts of proteoglycans (PG) released into culture medium and those present in chondrocyte aggregate (by a specific PG radioimmunoassay) showed a maximum production on Days 3 to 5 of culture, then the production decreased and stabilized (from Day 10 to the end of culture). The observed difference between the amounts of PG in aggregates after 20 d and those after 2 h of culture demonstrated that PG neosynthesis did occur during cultivation. This conclusion was supported by other results obtained by [14C]glucosamine incorporation in chondrocyte aggregates. Moreover, the aggregate fresh weight related to cell number (appreciated by DNA assay) increased significantly with culture duration. Three-dimensional chondrocyte culture represents an interesting model: chondrocytes were differentiated morphologically as well as biosynthetically and synthesized a new cartilage matrix
- …
