421 research outputs found

    The Quasi-Biennial Oscillation in atmospheric ozone

    Get PDF
    Examination of the relationship between tropical stratosphere zonal wind and ozone indicate a variable response in latitude with Northern Hemisphere tropics and polar regions and Southern Hemisphere mid-latitudes showing the strongest response with relatively weaker response at Northern Hemisphere mid-latitudes and the Southern Hemisphere tropics. In tropical regions, the west winds and ozone maxima are in phase while at higher latitudes, a more nearly out-of-phase relationship prevails. At subtropical and middle latitudes, the QBO in ozone does not appear to change phases with altitude. These features are suggestive of an interaction between the tropical zonal winds and poleward transport of horizontal eddies in conjunction with the annual poleward transport of ozone

    The role of ozone atmosphere-snow gas exchange on polar, boundary-layer tropospheric ozone ? a review and sensitivity analysis

    Get PDF
    International audienceRecent research on snowpack processes and atmosphere-snow gas exchange has demonstrated that chemical and physical interactions between the snowpack and the overlaying atmosphere have a substantial impact on the composition of the lower troposphere. These observations also imply that ozone deposition to the snowpack possibly depends on parameters including the quantity and composition of deposited trace gases, solar irradiance, snow temperature and the substrate below the snowpack. Current literature spans a remarkably wide range of ozone deposition velocities (vdO3); several studies even reported positive ozone fluxes out of the snow. Overall, published values range from ~?

    Airborne measurements of tropospheric ozone destruction and particulate bromide formation in the Arctic

    Get PDF
    Aircraft profiles of O3 concentrations over the Arctic ice pack in spring exhibit a depletion of O3 beneath the surface temperature inversion. One such profile from the NOAA WP-3D Arctic Gas and Aerosol Sampling Program (AGASP) flights in April, 1986 north of Alert, NWT (YLT, 82.5 N) is shown. The gradient of O3 across the temperature inversion, which is essentially a step function from tropospheric values (35 to 40 ppbv) to 0, is somewhat masked by a 1-min running mean applied to the data. Evidence is presented that O3 destruction beneath the Arctic temperature inversion is the result of a photochemical reaction between gaseous Br compounds and O3 to produce particulate Br aerosol. It is noted that in springtime, O3 at the Alert Baseline Station regularly decreases from 30 to 40 ppbv to near 0 over the period of a few hours to a day. At the same time, there is a production of particulate Br with a near 1.0 anti-correlation to O3 concentration. Surface concentrations of bromoform in the Arctic exhibit a rapid decrease following polar sunrise. AGASP aircraft measurements of filterable bromine particulates in the Arctic (March-April, 1983 and 1986) are shown. The greatest concentrations of Br aerosol (shown as enrichment factors relative to to Na in seawater, EFBR (Na)) were observed in samples collected beneath the surface temperature inversion over ice. Samples collected at the same altitude over open ocean (off Spitzbergen) labeled Marine did not exhibit similar Br enrichments. A second region of particulate Br enrichment was observed in the lower stratosphere, which regularly descends to below 500 mb (5.5 km) in the high Arctic. The NOAA WP-3D flew in the stratosphere on all AGASP flights and occasionally measured O3 concentrations in excess of 300 ppbv

    Trends and variability of midlatitude stratospheric water vapour deduced from the re-evaluated Boulder balloon series and HALOE

    Get PDF
    This paper presents an updated trend analysis of water vapour in the lower midlatitude stratosphere from the Boulder balloon-borne NOAA frostpoint hygrometer measurements and from the Halogen Occulation Experiment (HALOE). Two corrections for instrumental bias are applied to homogenise the frostpoint data series, and a quality assessment of all soundings after 1991 is presented. Linear trend estimates based on the corrected data for the period 1980–2000 are up to 40% lower than previously reported. Vertically resolved trends and variability are calculated with a multi regression analysis including the quasi-biennal oscillation and equivalent latitude as explanatory variables. In the range of 380 to 640 K potential temperature (≈14 to 25 km), the frostpoint data from 1981 to 2006 show positive linear trends between 0.3±0.3 and 0.7±0.1%/yr. The same dataset shows trends between −0.2±0.3 and 1.0±0.3%/yr for the period 1992 to 2005. HALOE data over the same time period suggest negative trends ranging from −1.1±0.2 to −0.1±0.1%/yr. In the lower stratosphere, a rapid drop of water vapour is observed in 2000/2001 with little change since. At higher altitudes, the transition is more gradual, with slowly decreasing concentrations between 2001 and 2007. This pattern is consistent with a change induced by a drop of water concentrations at entry into the stratosphere. Previously noted differences in trends and variability between frostpoint and HALOE remain for the homogenised data. Due to uncertainties in reanalysis temperatures and stratospheric transport combined with uncertainties in observations, no quantitative inference about changes of water entering the stratosphere in the tropics could be made with the mid latitude measurements analysed here

    Validation of northern latitude Tropospheric Emission Spectrometer stare ozone profiles with ARC-IONS sondes during ARCTAS: sensitivity, bias and error analysis

    Get PDF
    We compare Tropospheric Emission Spectrometer (TES) versions 3 and 4, V003 and V004, respectively, nadir-stare ozone profiles with ozonesonde profiles from the Arctic Intensive Ozonesonde Network Study (ARCIONS, http://croc.gsfc.nasa.gov/arcions/ during the Arctic Research on the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field mission. The ozonesonde data are from launches timed to match Aura's overpass, where 11 coincidences spanned 44° N to 71° N from April to July 2008. Using the TES "stare" observation mode, 32 observations are taken over each coincidental ozonesonde launch. By effectively sampling the same air mass 32 times, comparisons are made between the empirically-calculated random errors to the expected random errors from measurement noise, temperature and interfering species, such as water. This study represents the first validation of high latitude (>70°) TES ozone. We find that the calculated errors are consistent with the actual errors with a similar vertical distribution that varies between 5% and 20% for V003 and V004 TES data. In general, TES ozone profiles are positively biased (by less than 15%) from the surface to the upper-troposphere (~1000 to 100 hPa) and negatively biased (by less than 20%) from the upper-troposphere to the lower-stratosphere (100 to 30 hPa) when compared to the ozonesonde data. Lastly, for V003 and V004 TES data between 44° N and 71° N there is variability in the mean biases (from −14 to +15%), mean theoretical errors (from 6 to 13%), and mean random errors (from 9 to 19%)

    In situ observations of "cold trap" dehydration in the western tropical Pacific

    No full text
    International audienceWater vapor sonde observations were conducted at Bandung, Indonesia (6.90 S, 107.60 E) and Tarawa, Kiribati (1.35 N, 172.91 E) in December 2003 to examine the efficiency of the "cold trap'' dehydration in the tropical tropopause layer (TTL). Trajectory analysis based on bundles of trajectories suggest that the modification of air parcels' identity due to irreversible mixing by the branching-out and merging-in of nearby trajectories is found to be an important factor, in addition to the routes air parcels are supposed to follow, for interpreting the water vapor concentrations observed by radiosondes in the TTL. Clear correspondence between the observed water vapor concentration and the estimated temperature history of air parcels is found showing that dry air parcels are exposed to low temperatures while humid air parcels do not experience cold conditions during advection, in support of the "cold trap'' hypothesis. It is suggested that the observed air parcel retained the water vapor by roughly twice as much as the minimum saturation mixing ratio after its passage through the "cold trap,'' although appreciable uncertainties remain

    Technical Note: Ozonesonde climatology between 1995 and 2011: description, evaluation and applications

    Get PDF
    An ozone climatology based on ozonesonde measurements taken over the last 17 yr has been constructed for model evaluation and comparisons to other observations. Vertical ozone profiles for 42 stations around the globe have been compiled for the period 1995–2011, in pressure and tropopause-referenced altitudes. For each profile, the mean, standard deviation, median, the half-width are provided, as well as information about interannual variability. Regional aggregates are formed in combining stations with similar ozone characteristics. The Hellinger distance is introduced as a new diagnostic to identify stations that describe similar shapes of ozone probability distribution functions (PDFs). In this way, 12 regions were selected covering at least 2 stations and the variability among those stations is discussed. Significant variability with longitude of ozone distributions in the troposphere and lower stratosphere in the northern mid- and high latitudes is found. The representativeness of regional aggregates is discussed for high northern latitudes, Western Europe, Eastern US, and Japan, using independent observations from surface stations and MOZAIC aircraft data. Good agreement exists between ozonesondes and aircraft observations in the mid-troposphere and between ozonesondes and surface observations for Western Europe. For Eastern US and high northern latitudes, surface ozone values from ozonesondes are biased 10 ppb high compared to independent measurements. An application of the climatology is presented using the NCAR CAM-Chem model. The climatology allows evaluation of the model performance regarding ozone averages, seasonality, interannual variability, and the shape of ozone distributions. The new assessment of the key features of ozone distributions gives deeper insights into the performance of models
    corecore