2,278 research outputs found

    Quasi-Normal Modes of a Schwarzschild White Hole

    Full text link
    We investigate perturbations of the Schwarzschild geometry using a linearization of the Einstein vacuum equations within a Bondi-Sachs, or null cone, formalism. We develop a numerical method to calculate the quasi-normal modes, and present results for the case =2\ell=2. The values obtained are different to those of a Schwarzschild black hole, and we interpret them as quasi-normal modes of a Schwarzschild white hole.Comment: 5 pages, 4 Figure

    High-density correlation energy expansion of the one-dimensional uniform electron gas

    Full text link
    We show that the expression of the high-density (i.e small-rsr_s) correlation energy per electron for the one-dimensional uniform electron gas can be obtained by conventional perturbation theory and is of the form \Ec(r_s) = -\pi^2/360 + 0.00845 r_s + ..., where rsr_s is the average radius of an electron. Combining these new results with the low-density correlation energy expansion, we propose a local-density approximation correlation functional, which deviates by a maximum of 0.1 millihartree compared to the benchmark DMC calculations.Comment: 7 pages, 2 figures, 3 tables, accepted for publication in J. Chem. Phy

    Stokes phenomenon and matched asymptotic expansions

    Get PDF
    This paper describes the use of matched asymptotic expansions to illuminate the description of functions exhibiting Stokes phenomenon. In particular the approach highlights the way in which the local structure and the possibility of finding Stokes multipliers explicitly depend on the behaviour of the coefficients of the relevant asymptotic expansions

    Analytic structure of radiation boundary kernels for blackhole perturbations

    Full text link
    Exact outer boundary conditions for gravitational perturbations of the Schwarzschild metric feature integral convolution between a time-domain boundary kernel and each radiative mode of the perturbation. For both axial (Regge-Wheeler) and polar (Zerilli) perturbations, we study the Laplace transform of such kernels as an analytic function of (dimensionless) Laplace frequency. We present numerical evidence indicating that each such frequency-domain boundary kernel admits a "sum-of-poles" representation. Our work has been inspired by Alpert, Greengard, and Hagstrom's analysis of nonreflecting boundary conditions for the ordinary scalar wave equation.Comment: revtex4, 14 pages, 12 figures, 3 table

    Gravitating fluids with Lie symmetries

    Full text link
    We analyse the underlying nonlinear partial differential equation which arises in the study of gravitating flat fluid plates of embedding class one. Our interest in this equation lies in discussing new solutions that can be found by means of Lie point symmetries. The method utilised reduces the partial differential equation to an ordinary differential equation according to the Lie symmetry admitted. We show that a class of solutions found previously can be characterised by a particular Lie generator. Several new families of solutions are found explicitly. In particular we find the relevant ordinary differential equation for all one-dimensional optimal subgroups; in several cases the ordinary differential equation can be solved in general. We are in a position to characterise particular solutions with a linear barotropic equation of state.Comment: 13 pages, To appear in J. Phys. A: Math. Theo

    Complex sine-Gordon-2: a new algorithm for multivortex solutions on the plane

    Full text link
    We present a new vorticity-raising transformation for the second integrable complexification of the sine-Gordon equation on the plane. The new transformation is a product of four Schlesinger maps of the Painlev\'{e}-V to itself, and allows a more efficient construction of the nn-vortex solution than the previously reported transformation comprising a product of 2n2n maps.Comment: Part of a talk given at a conference on "Nonlinear Physics. Theory and Experiment", Gallipoli (Lecce), June-July 2004. To appear in a topical issue of "Theoretical and Mathematical Physics". 7 pages, 1 figur

    On bosonic limits of two recent supersymmetric extensions of the Harry Dym hierarchy

    Full text link
    Two generalized Harry Dym equations, recently found by Brunelli, Das and Popowicz in the bosonic limit of new supersymmetric extensions of the Harry Dym hierarchy [J. Math. Phys. 44:4756--4767 (2003)], are transformed into previously known integrable systems: one--into a pair of decoupled KdV equations, the other one--into a pair of coupled mKdV equations from a bi-Hamiltonian hierarchy of Kupershmidt.Comment: 7 page

    On Non-Commutative Integrable Burgers Equations

    Get PDF
    We construct the recursion operators for the non-commutative Burgers equations using their Lax operators. We investigate the existence of any integrable mixed version of left- and right-handed Burgers equations on higher symmetry grounds.Comment: 8 page

    On the geometry of lambda-symmetries, and PDEs reduction

    Full text link
    We give a geometrical characterization of λ\lambda-prolongations of vector fields, and hence of λ\lambda-symmetries of ODEs. This allows an extension to the case of PDEs and systems of PDEs; in this context the central object is a horizontal one-form μ\mu, and we speak of μ\mu-prolongations of vector fields and μ\mu-symmetries of PDEs. We show that these are as good as standard symmetries in providing symmetry reduction of PDEs and systems, and explicit invariant solutions
    corecore