833 research outputs found

    Is it time for integration of surgical skills simulation into the United Kingdom undergraduate medical curriculum? A perspective from King’s College London School of Medicine

    Get PDF
    PURPOSE: Changes in undergraduate medical curricula, combined with reforms in postgraduate education, have training implications for surgical skills acquisition in a climate of reduced clinical exposure. Confidence and prior experience influences the educational impact of learning. Currently there is no basic surgical skills (BSS) programme integrated into undergraduate curricula in the United Kingdom. We explored the role of a dedicated BSS programme for undergraduates in improving confidence and influencing careers in King's College London School of Medicine, and the programme was evaluated. METHODS: A programme was designed in-line with the established Royal College of Surgeons course. Undergraduates were taught four key skills over four weeks: knot-tying, basic-suturing, tying-at-depth and chest-drain insertion, using low-fidelity bench-top models. A Likert-style questionnaire was designed to determine educational value and influence on career choice. Qualitative data was collected. RESULTS: Only 29% and 42% of students had undertaken previous practice in knot-tying and basic suturing, respectively. 96% agreed that skills exposure prior to starting surgical rotations was essential and felt a dedicated course would augment undergraduate training. There was a significant increase in confidence in the practice and knowledge of all skills taught (p<0.01), with a greater motivation to be actively involved in the surgical firm and theatres. CONCLUSION: A simple, structured BSS programme can increase the confidence and motivation of students. Early surgical skills targeting is valuable for students entering surgical, related allied, and even traditionally non-surgical specialties such as general practice. Such experience can increase the confidence of future junior doctors and trainees. We advocate the introduction of a BSS programme into United Kingdom undergraduate curricula

    Elimination of unoccupied state summations in it ab initio self-energy calculations for large supercells

    Get PDF
    We present a new method for the computation of self-energy corrections in large supercells. It eliminates the explicit summation over unoccupied states, and uses an iterative scheme based on an expansion of the Green's function around a set of reference energies. This improves the scaling of the computational time from the fourth to the third power of the number of atoms for both the inverse dielectric matrix and the self-energy, yielding improved efficiency for 8 or more silicon atoms per unit cell

    Excitonic effects in solids described by time-dependent density functional theory

    Get PDF
    Starting from the many-body Bethe-Salpeter equation we derive an exchange-correlation kernel fxcf_{xc} that reproduces excitonic effects in bulk materials within time-dependent density functional theory. The resulting fxcf_{xc} accounts for both self-energy corrections and the electron-hole interaction. It is {\em static}, {\em non-local} and has a long-range Coulomb tail. Taking the example of bulk silicon, we show that the α/q2- \alpha / q^2 divergency is crucial and can, in the case of continuum excitons, even be sufficient for reproducing the excitonic effects and yielding excellent agreement between the calculated and the experimental absorption spectrum.Comment: 6 pages, 1 figur

    Optical absorption spectra of finite systems from a conserving Bethe-Salpeter equation approach

    Full text link
    We present a method for computing optical absorption spectra by means of a Bethe-Salpeter equation approach, which is based on a conserving linear response calculation for electron-hole coherences in the presence of an external electromagnetic field. This procedure allows, in principle, for the determination of the electron-hole correlation function self-consistently with the corresponding single-particle Green function. We analyze the general approach for a "one-shot" calculation of the photoabsorption cross section of finite systems, and discuss the importance of scattering and dephasing contributions in this approach. We apply the method to the closed-shell clusters Na_4, Na^+_9 and Na^+_(21), treating one active electron per Na atom.Comment: 9 pages, 3 figure

    Vibrational Study of 13C-enriched C60 Crystals

    Full text link
    The infrared (IR) spectrum of solid C60 exhibits many weak vibrational modes. Symmetry breaking due to 13C isotopes provides a possible route for optically activating IR-silent vibrational modes. Experimental spectra and a semi-empirical theory on natural abundance and 13C-enriched single crystals of C60 are presented. By comparing the experimental results with the theoretical results, we exclude this isotopic activation mechanism from the explanation for weakly active fundamentals in the spectra.Comment: Accepted for Phys. Rev. B, typeset in REVTEX v3.0 in LaTeX. Postscript file including figures is available at http://insti.physics.sunysb.edu/~mmartin/papers/c13twocol2.ps File with figures will be e-mailed by reques

    Ab-initio calculations of the optical properties of the Si(113)3x2ADI surface

    Full text link
    We investigated the stable silicon (113) surface with a 3x2ADI reconstruction by ab-initio methods. The ground state properties have been obtained using the density-functional theory. We present the dispersion of the electronic band structure, where the surface bands have been distinguished from the projected bulk bands by calculating their localization in the slab. The optical spectra, here the reflectance anisotropy (RAS), have been obtained within the independent particle random phase approximation. We identified surface features in the spectra tracing them back to the responsible electronic states and, studied their localization in the slab. A comparison with available experimental data for the band structure and the RAS shows a good agreement.Comment: 10 pages, 10 figure

    Study of a Nonlocal Density scheme for electronic--structure calculations

    Full text link
    An exchange-correlation energy functional beyond the local density approximation, based on the exchange-correlation kernel of the homogeneous electron gas and originally introduced by Kohn and Sham, is considered for electronic structure calculations of semiconductors and atoms. Calculations are carried out for diamond, silicon, silicon carbide and gallium arsenide. The lattice constants and gaps show a small improvement with respect to the LDA results. However, the corresponding corrections to the total energy of the isolated atoms are not large enough to yield a substantial improvement for the cohesive energy of solids, which remains hence overestimated as in the LDA.Comment: 4 postscript figure

    Ab initio optical properties of Si(100)

    Full text link
    We compute the linear optical properties of different reconstructions of the clean and hydrogenated Si(100) surface within DFT-LDA, using norm-conserving pseudopotentials. The equilibrium atomic geometries of the surfaces, determined from self-consistent total energy calculations within the Car-Parrinello scheme, strongly influence Reflectance Anisotropy Spectra (RAS), showing differences between the p(2x2) and c(4x2)reconstructions. The Differential Reflectivity spectrum for the c(4x2) reconstruction shows a positive peak at energies < 1 eV, in agreement with experimental results.Comment: fig. 2 correcte

    Electron-phonon interaction in C70

    Full text link
    The matrix elements of the deformation potential of C70_{70} are calculated by means of a simple, yet accurate solution of the electron-phonon coupling problem in fullerenes, based on a parametrization of the ground state electronic density of the system in terms of sp2+xsp^{2+x} hybridized orbitals. The value of the calculated dimensionless total electron-phonon coupling constant is λ0.1\lambda\approx0.1, an order of magnitude smaller than in C60_{60}, consistent with the lack of a superconducting phase transition in C70_{70}A3_3 fullerite, and in overall agreement with measurements of the broadening of Raman peaks in C70_{70}K4_4. We also calculate the photoemission cross section of C70_{70}^-, which is found to display less structure than that associated with C60_{60}^-, in overall agreement with the experimental findings.Comment: To be published in Phys. Rev.

    Many-body-QED perturbation theory: Connection to the Bethe-Salpeter equation

    Full text link
    The connection between many-body theory (MBPT)--in perturbative and non-perturbative form--and quantum-electrodynamics (QED) is reviewed for systems of two fermions in an external field. The treatment is mainly based upon the recently developed covariant-evolution-operator method for QED calculations [Lindgren et al. Phys. Rep. 389, 161 (2004)], which has a structure quite akin to that of many-body perturbation theory. At the same time this procedure is closely connected to the S-matrix and the Green's-function formalisms and can therefore serve as a bridge between various approaches. It is demonstrated that the MBPT-QED scheme, when carried to all orders, leads to a Schroedinger-like equation, equivalent to the Bethe-Salpeter (BS) equation. A Bloch equation in commutator form that can be used for an "extended" or quasi-degenerate model space is derived. It has the same relation to the BS equation as has the standard Bloch equation to the ordinary Schroedinger equation and can be used to generate a perturbation expansion compatible with the BS equation also for a quasi-degenerate model space.Comment: Submitted to Canadian J of Physic
    corecore