10,906 research outputs found
The water cycle in a changing climate
Millions of people across the globe are already affected by natural variability in the water cycle. A multidisciplinary team of experts from the University of East Anglia and the University of Nottingham, led by Timothy Osborn, Professor of Climate Science at the world-renowned Climatic Research Unit, set out the empirical evidence - and argue the need for implementation of measured adaptation mechanisms that take into account uncertainties in the projection of future precipitation patterns
Optical Production of Stable Ultracold Sr Molecules
We have produced large samples of ultracold Sr molecules in the
electronic ground state in an optical lattice. The molecules are bound by 0.05
cm and are stable for several milliseconds. The fast, all-optical method
of molecule creation via intercombination line photoassociation relies on a
near-unity Franck-Condon factor. The detection uses a weakly bound vibrational
level corresponding to a very large dimer. This is the first of two steps
needed to create Sr in the absolute ground quantum state. Lattice-trapped
Sr is of interest to frequency metrology and ultracold chemistry.Comment: 5 pages, 3 figure
Business Cycle Synchrinization of the Euro Area with the New and Negotiating Member Countries
Useful Descriptions of Organizational Processes: Collecting Data for the Process Handbook
This paper describes a data collection methodology for business process analysis. Unlike static objects, business processes are semi-repetitive sequences of events that are often widely distributed in time and space, with ambiguous boundaries. To redesign or even just describe a business process requires an approach that is sensitive to these aspects of the phenomena. The method described here is intended to generate semi-formal process representations suitable for inclusion in a "handbook" of organizational processes. Using basic techniques of ethnographic interviewing and observation, the method helps users map decomposition, specialization, and dependency relationships at an intermediate level of abstraction meaningful to participants. By connecting new process descriptions to an existing taxonomy of similar descriptions in the Handbook, this method helps build a common vocabulary for process description and analysis.
Universal dielectric loss in amorphous solids from simultaneous bias and microwave field
We derive the ac dielectric loss in glasses due to resonant processes created
by two-level systems and a swept electric field bias. It is shown that at
sufficiently large ac fields and bias sweep rates the nonequilibrium loss
tangent created by the two fields approaches a universal maximum determined by
the bare linear dielectric permittivity. In addition this nonequilibrium loss
tangent is derived for a range of bias sweep rates and ac amplitudes and show
that the loss tangent creates a predicted loss function that can be understood
in a Landau-Zener theory and which can be used to extract the TLS density,
dipole moment, and relaxation rate.Comment: To appear in Physical Review Letters, 4 pages, 3 figure
Liquid-hydrogen rocket engine development at Aerojet, 1944 - 1950
This program demonstrated the feasibility of virtually all the components in present-day, high-energy, liquid-rocket engines. Transpiration and film-cooled thrust chambers were successfully operated. The first liquid-hydrogen tests of the coaxial injector was conducted and the first pump to successfully produce high pressures in pumping liquid hydrogen was tested. A 1,000-lb-thrust gaseous propellant and a 3,000-lb-thrust liquid-propellant thrust chamber were operated satisfactorily. Also, the first tests were conducted to evaluate the effects of jet overexpansion and separation on performance of rocket thrust chambers with hydrogen-oxygen propellants
Loss Dependence on Geometry and Applied Power in Superconducting Coplanar Resonators
The loss in superconducting microwave resonators at low-photon number and low
temperatures is not well understood but has implications for achievable
coherence times in superconducting qubits. We have fabricated single-layer
resonators with a high quality factor by patterning a superconducting aluminum
film on a sapphire substrate. Four resonator geometries were studied with
resonant frequencies ranging from 5 to 7 GHz: a quasi-lumped element resonator,
a coplanar strip waveguide resonator, and two hybrid designs that contain both
a coplanar strip and a quasi-lumped element. Transmitted power measurements
were taken at 30 mK as a function of frequency and probe power. We find that
the resonator loss, expressed as the inverse of the internal quality factor,
decreases slowly over four decades of photon number in a manner not merely
explained by loss from a conventional uniform spatial distribution of two-level
systems in an oxide layer on the superconducting surfaces of the resonator.Comment: 4 pages, 5 figures, Submitted to ASC 2010 conference proceeding
Symmetry of re-entrant tetragonal phase in Ba1-xNaxFe2As2: Magnetic versus orbital ordering mechanism
Magneto-structural phase transitions in Ba1-xAxFe2As2 (A = K, Na) materials
are discussed for both magnetically and orbitally driven mechanisms, using a
symmetry analysis formulated within the Landau theory of phase transitions.
Both mechanisms predict identical orthorhombic space-group symmetries for the
nematic and magnetic phases observed over much of the phase diagram, but they
predict different tetragonal space-group symmetries for the newly discovered
re-entrant tetragonal phase in Ba1-xNaxFe2As2 (x ~ 0.24-0.28). In a magnetic
scenario, magnetic order with moments along the c-axis, as found
experimentally, does not allow any type of orbital order, but in an orbital
scenario, we have determined two possible orbital patterns, specified by
P4/mnc1' and I4221' space groups, which do not require atomic displacements
relative to the parent I4/mmm1' symmetry and, in consequence, are
indistinguishable in conventional diffraction experiments. We demonstrate that
the three possible space groups are however, distinct in resonant X-ray Bragg
diffraction patterns created by Templeton & Templeton scattering. This provides
an experimental method of distinguishing between magnetic and orbital models
- …
