1,080 research outputs found
How do galactic winds affect the Lyalpha forest?
We investigate the effect of galactic winds on the Lyalpha forest in
cosmological simulations of structure and galaxy formation. We combine high
resolution N-body simulations of the evolution of the dark matter with a
semi-analytic model for the formation and evolution of galaxies which includes
detailed prescriptions for the long-term evolution of galactic winds. This
model is the first to describe the evolution of outflows as a two-phase process
(an adiabatic bubble followed by a momentum--driven shell) and to include
metal--dependent cooling of the outflowing material. We find that the main
statistical properties of the Lyalpha forest, namely the flux power spectrum
P(k) and the flux probability distribution function (PDF), are not
significantly affected by winds and so do not significantly constrain wind
models. Winds around galaxies do, however, produce detectable signatures in the
forest, in particular, increased flux transmissivity inside hot bubbles, and
narrow, saturated absorption lines caused by dense cooled shells. We find that
the Lyalpha flux transmissivity is highly enhanced near strongly wind-blowing
galaxies, almost half of all high-redshift galaxies in our sample, in agreement
with the results of Adelberger et al. (2005). Finally, we propose a new method
to identify absorption lines potentially due to wind shells in the Lyalpha
forest: we calculate the abundance of saturated regions in spectra as a
function of region width and we find that the number with widths smaller than
about 1 Angstrom at z=3 and 0.6 Angstrom at z=2 may be more than doubled. This
should be detectable in real spectra.Comment: 14 pages, 11 figures. Minor changes in the text. Accepted for
publication in MNRA
Magnetic Field Seeding by Galactic Winds
The origin of intergalactic magnetic fields is still a mystery and several
scenarios have been proposed so far: among them, primordial phase transitions,
structure formation shocks and galactic outflows. In this work we investigate
how efficiently galactic winds can provide an intense and widespread "seed"
magnetisation. This may be used to explain the magnetic fields observed today
in clusters of galaxies and in the intergalactic medium (IGM). We use
semi-analytic simulations of magnetised galactic winds coupled to high
resolution N-body simulations of structure formation to estimate lower and
upper limits for the fraction of the IGM which can be magnetised up to a
specified level. We find that galactic winds are able to seed a substantial
fraction of the cosmic volume with magnetic fields. Most regions affected by
winds have magnetic fields in the range -12 < Log B < -8 G, while higher seed
fields can be obtained only rarely and in close proximity to wind-blowing
galaxies. These seed fields are sufficiently intense for a moderately efficient
turbulent dynamo to amplify them to the observed values. The volume filling
factor of the magnetised regions strongly depends on the efficiency of winds to
load mass from the ambient medium. However, winds never completely fill the
whole Universe and pristine gas can be found in cosmic voids and regions
unaffected by feedback even at z=0. This means that, in principle, there might
be the possibility to probe the existence of primordial magnetic fields in such
regions.Comment: 14 pages, 5 figures. Accepted for publications by MNRAS. A high
resolution version of the paper is available at
http://astronomy.sussex.ac.uk/~sb207/Papers/bb.ps.g
Radiative Transfer and Radiative driving of Outflows in AGN and Starbursts
To facilitate the study of black hole fueling, star formation, and feedback
in galaxies, we outline a method for treating the radial forces on interstellar
gas due to absorption of photons by dust grains. The method gives the correct
behavior in all of the relevant limits (dominated by the central point source;
dominated by the distributed isotropic source; optically thin; optically thick
to UV/optical; optically thick to IR) and reasonably interpolates between the
limits when necessary. The method is explicitly energy conserving so that
UV/optical photons that are absorbed are not lost, but are rather redistributed
to the IR where they may scatter out of the galaxy. We implement the radiative
transfer algorithm in a two-dimensional hydrodynamical code designed to study
feedback processes in the context of early-type galaxies. We find that the
dynamics and final state of simulations are measurably but only moderately
affected by radiative forces on dust, even when assumptions about the
dust-to-gas ratio are varied from zero to a value appropriate for the Milky
Way. In simulations with high gas densities designed to mimic ULIRGs with a
star formation rate of several hundred solar masses per year, dust makes a more
substantial contribution to the dynamics and outcome of the simulation. We find
that, despite the large opacity of dust to UV radiation, the momentum input to
the flow from radiation very rarely exceeds L/c due to two factors: the low
opacity of dust to the re-radiated IR and the tendency for dust to be destroyed
by sputtering in hot gas environments. We also develop a simplification of our
radiative transfer algorithm that respects the essential physics but is much
easier to implement and requires a fraction of the computational cost.Comment: 25 pages, 17 figures, submitted to MNRA
The Effect of the AGN Feedback on the Interstellar Medium of Early-Type Galaxies: 2D Hydrodynamical Simulations of the Low-Rotation Case
We present 2D hydrodynamical simulations for the evolution of early-type
galaxies containing central massive black holes (MBHs), starting at age 2 Gyr.
The code contains accurate and physically consistent radiative and mechanical
AGN wind feedback, with parsec-scale central resolution. Mass input comes from
stellar evolution; energy input includes Type Ia and II supernova and stellar
heating; star-formation is included. Realistic, axisymmetric dynamical models
for the galaxies are built solving the Jeans' equations. The lowest mass models
(Mstar = 8 10^{10}Msun) develop global outflows sustained by SNIa's heating,
ending with a significantly lower amount of hot gas and new stars. In more
massive models, nuclear outbursts last to the present epoch, with large and
frequent fluctuations in nuclear emission and from the gas (Lx). Each burst
last ~ 10^{7.5} yr, during which (for r < 2-3 kpc) cold, inflowing, and hot,
outflowing gas phases coexist. The Lx-T relation for the gas matches that of
local galaxies. AGN activity causes positive feedback for star formation.
Roughly half of the total mass loss is recycled into new stars (DeltaMstar),
just ~ 3% of it is accreted on the MBH, the remainder being ejected from the
galaxy. The ratio between the mass of gas expelled to that in to new stars, the
load factor, is ~0.6. Rounder galaxies shapes lead to larger final MBH masses,
DeltaMstar, and Lx. Almost all the time is spent at very low nuclear
luminosities, yet one quarter of the total energy is emitted at an Eddington
ratio > 0.1. The duty-cycle of AGN activity approximates 4% (Abridged).Comment: 26 pages, 15 figure, submitted to ApJ. Comments welcom
Evidence of widespread degradation of gene control regions in hominid genomes
Although sequences containing regulatory elements located close to protein-coding genes are often only weakly conserved during evolution, comparisons of rodent genomes have implied that these sequences are subject to some selective constraints. Evolutionary conservation is particularly apparent upstream of coding sequences and in first introns, regions that are enriched for regulatory elements. By comparing the human and chimpanzee genomes, we show here that there is almost no evidence for conservation in these regions in hominids. Furthermore, we show that gene expression is diverging more rapidly in hominids than in murids per unit of neutral sequence divergence. By combining data on polymorphism levels in human noncoding DNA and the corresponding human¿chimpanzee divergence, we show that the proportion of adaptive substitutions in these regions in hominids is very low. It therefore seems likely that the lack of conservation and increased rate of gene expression divergence are caused by a reduction in the effectiveness of natural selection against deleterious mutations because of the low effective population sizes of hominids. This has resulted in the accumulation of a large number of deleterious mutations in sequences containing gene control elements and hence a widespread degradation of the genome during the evolution of humans and chimpanzees
AGN feedback in an isolated elliptical galaxy: the effect of strong radiative feedback in the kinetic mode
Based on two-dimensional high resolution hydrodynamic numerical simulation,
we study the mechanical and radiative feedback effects from the central AGN on
the cosmological evolution of an isolated elliptical galaxy. Physical processes
such as star formation and supernovae are considered. The inner boundary of the
simulation domain is carefully chosen so that the fiducial Bondi radius is
resolved and the accretion rate of the black hole is determined
self-consistently. In analogy to previous works, we assume that the specific
angular momentum of the galaxy is low. It is well-known that when the accretion
rates are high and low, the central AGNs will be in cold and hot accretion
modes, which correspond to the radiative and kinetic feedback modes,
respectively. The emitted spectrum from the hot accretion flows is harder than
that from the cold accretion flows, which could result in a higher Compton
temperature accompanied by a more efficient radiative heating, according to
previous theoretical works. Such a difference of the Compton temperature
between the two feedback modes, the focus of this study, has been neglected in
previous works. Significant differences in the kinetic feedback mode are found
as a result of the stronger Compton heating and accretion becomes more chaotic.
More importantly, if we constrain models to correctly predict black hole growth
and AGN duty cycle after cosmological evolution, we find that the favored model
parameters are constrained: mechanical feedback efficiency diminishes with
decreasing luminosity (the maximum efficiency being ) and
X-ray Compton temperature increases with decreasing luminosity, although models
with fixed mechanical efficiency and Compton temperature can be found that are
satisfactory as well. We conclude that radiative feedback in the kinetic mode
is much more important than previously thought.Comment: 35 pages, 7 figures, accepted by the Ap
The Role of Black Hole Feedback on Size and Structural Evolution in Massive Galaxies
We use cosmological hydrodynamical simulations to investigate the role of
feedback from accreting black holes on the evolution of sizes, compactness,
stellar core density and specific star-formation of massive galaxies with
stellar masses of . We perform two sets of
cosmological zoom-in simulations of 30 halos to z=0: (1) without black holes
and Active Galactic Nucleus (AGN) feedback and (2) with AGN feedback arising
from winds and X-ray radiation. We find that AGN feedback can alter the stellar
density distribution, reduce the core density within the central 1 kpc by 0.3
dex from z=1, and enhance the size growth of massive galaxies. We also find
that galaxies simulated with AGN feedback evolve along similar tracks to those
characterized by observations in specific star formation versus compactness. We
confirm that AGN feedback plays an important role in transforming galaxies from
blue compact galaxies into red extended galaxies in two ways: (1) it
effectively quenches the star formation, transforming blue compact galaxies
into compact quiescent galaxies and (2) it also removes and prevents new
accretion of cold gas, shutting down in-situ star formation and causing
subsequent mergers to be gas-poor or mixed. Gas poor minor mergers then build
up an extended stellar envelope. AGN feedback also puffs up the central region
through the fast AGN driven winds as well as the slow expulsion of gas while
the black hole is quiescent. Without AGN feedback, large amounts of gas
accumulate in the central region, triggering star formation and leading to
overly massive blue galaxies with dense stellar cores.Comment: 13 pages, 7 figures, Accepted for publication in Ap
- …
