579 research outputs found

    Decaying Dark Energy in Higher-Dimensional Gravity

    Get PDF
    We use data from observational cosmology to put constraints on higher-dimensional extensions of general relativity in which the effective four-dimensional dark-energy density (or cosmological "constant") decays with time. In particular we study the implications of this decaying dark energy for the age of the universe, large-scale structure formation, big-bang nucleosynthesis and the magnitude-redshift relation for Type Ia supernovae. Two of these tests (age and the magnitude-redshift relation) place modest lower limits on the free parameter of the theory, a cosmological length scale L akin to the de Sitter radius. These limits will improve if experimental uncertainties on supernova magnitudes can be reduced around z=1.Comment: 11 pages, 5 figures, submitted to A&

    Scaling Relations for the Cosmological "Constant" in Five-Dimensional Relativity

    Get PDF
    When the cosmological "constant" is derived from modern five-dimensional relativity, exact solutions imply that for small systems it scales in proportion to the square of the mass. However, a duality transformation implies that for large systems it scales as the inverse square of the mass

    Constraints on Kaluza-Klein gravity from Gravity Probe B

    Full text link
    Using measurements of geodetic precession from Gravity Probe B, we constrain possible departures from Einstein's General Relativity for a spinning test body in Kaluza-Klein gravity with one additional space dimension. We consider the two known static and spherically symmetric solutions of the 5D field equations (the soliton and canonical metrics) and obtain new limits on the free parameters associated with each. The theory is consistent with observation but must be "close to 4D" in both cases.Comment: 9 pages, 1 figure; General Relativity and Gravitation, in pres

    Astrophysical Implications of Higher-Dimensional Gravity

    Full text link
    We review the implications of modern higher-dimensional theories of gravity for astrophysics and cosmology. In particular, we discuss the latest developments of space-time-matter theory in connection with dark matter, particle dynamics and the cosmological constant, as well as related aspects of quantum theory. There are also more immediate tests of extra dimensions, notably involving perturbations of the cosmic 3K microwave background and the precession of a supercooled gyroscope in Earth orbit. We also outline some general features of embeddings, and include pictures of the big bang as viewed from a higher dimension.Comment: 23 pages, 2 figures; to appear in Space Science Reviews; v3: typos corrected and minor changes to text, expanded derivation of fundamental mode adde

    Cosmological Implications of a Non-Separable 5D Solution of the Vacuum Einstein Field Equations

    Full text link
    An exact class of solutions of the 5D vacuum Einstein field equations (EFEs) is obtained. The metric coefficients are found to be non-separable functions of time and the extra coordinate ll and the induced metric on ll = constant hypersurfaces has the form of a Friedmann-Robertson-Walker cosmology. The 5D manifold and 3D and 4D submanifolds are in general curved, which distinguishes this solution from previous ones in the literature. The singularity structure of the manifold is explored: some models in the class do not exhibit a big bang, while other exhibit a big bang and a big crunch. For the models with an initial singularity, the equation of state of the induced matter evolves from radiation like at early epochs to Milne-like at late times and the big bang manifests itself as a singular hypersurface in 5D. The projection of comoving 5D null geodesics onto the 4D submanifold is shown to be compatible with standard 4D comoving trajectories, while the expansion of 5D null congruences is shown to be in line with conventional notions of the Hubble expansion.Comment: 8 pages, in press in J. Math. Phy

    Dynamics of a Generalized Cosmological Scalar-Tensor Theory

    Get PDF
    A generalized scalar-tensor theory is investigated whose cosmological term depends on both a scalar field and its time derivative. A correspondence with solutions of five-dimensional Space-Time-Matter theory is noted. Analytic solutions are found for the scale factor, scalar field and cosmological term. Models with free parameters of order unity are consistent with recent observational data and could be relevant to both the dark-matter and cosmological-"constant" problems.Comment: 13 page

    Geometrization of the Gauge Connection within a Kaluza-Klein Theory

    Full text link
    Within the framework of a Kaluza-Klein theory, we provide the geometrization of a generic (Abelian and non-Abelian) gauge coupling, which comes out by choosing a suitable matter fields dependence on the extra-coordinates. We start by the extension of the Nother theorem to a multidimensional spacetime being the direct sum of a 4-dimensional Minkowski space and of a compact homogeneous manifold (whose isometries reflect the gauge symmetry); we show, how on such a ``vacuum'' configuration, the extra-dimensional components of the field momentum correspond to the gauge charges. Then we analyze the structure of a Dirac algebra as referred to a spacetime with the Kaluza-Klein restrictions and, by splitting the corresponding free-field Lagrangian, we show how the gauge coupling terms outcome.Comment: 10 pages, no figure, to appear on Int. Journ. Theor. Phy
    corecore