138,868 research outputs found
Recommended from our members
Product line design
We characterize the product line choice and pricing of a monopolist from the upper envelope of net marginal revenue curves to the individual product demand functions. The equilibrium product line constitutes those varieties yielding the highest upper envelope. In a generalized vertical differentiation framework, the equilibrium line is exactly the same as the first-best socially optimal line. These upper envelope and first-best optimal line findings extend to symmetric Cournot oligopoly
Energy spectra of vortex distributions in two-dimensional quantum turbulence
We theoretically explore key concepts of two-dimensional turbulence in a
homogeneous compressible superfluid described by a dissipative two-dimensional
Gross-Pitaeveskii equation. Such a fluid supports quantized vortices that have
a size characterized by the healing length . We show that for the
divergence-free portion of the superfluid velocity field, the kinetic energy
spectrum over wavenumber may be decomposed into an ultraviolet regime
() having a universal scaling arising from the vortex
core structure, and an infrared regime () with a spectrum that
arises purely from the configuration of the vortices. The Novikov power-law
distribution of intervortex distances with exponent -1/3 for vortices of the
same sign of circulation leads to an infrared kinetic energy spectrum with a
Kolmogorov power law, consistent with the existence of an inertial
range. The presence of these and power laws, together with
the constraint of continuity at the smallest configurational scale
, allows us to derive a new analytical expression for the
Kolmogorov constant that we test against a numerical simulation of a forced
homogeneous compressible two-dimensional superfluid. The numerical simulation
corroborates our analysis of the spectral features of the kinetic energy
distribution, once we introduce the concept of a {\em clustered fraction}
consisting of the fraction of vortices that have the same sign of circulation
as their nearest neighboring vortices. Our analysis presents a new approach to
understanding two-dimensional quantum turbulence and interpreting similarities
and differences with classical two-dimensional turbulence, and suggests new
methods to characterize vortex turbulence in two-dimensional quantum fluids via
vortex position and circulation measurements.Comment: 19 pages, 8 figure
CO adsorption on (111) and (100) surfaces of the Pt sub 3 Ti alloy. Evidence for parallel binding and strong activation of CO
The CO adsorption on a 40 atom cluster model of the (111) surface and a 36 atom cluster model of the (100) surface of the Pt3Ti alloy was studied. Parallel binding to high coordinate sites associated with Ti and low CO bond scission barriers are predicted for both surfaces. The binding of CO to Pt sites occurs in an upright orientation. These orientations are a consequence of the nature of the CO pi donation interactions with the surface. On the Ti sites the orbitals donate to the nearly empty Ti 3d band and the antibonding counterpart orbitals are empty. On the Pt sites, however, they are in the filled Pt 5d region of the alloy band, which causes CO to bond in a vertical orientation by 5 delta donation from the carbon end
Recommended from our members
Stepwise Development and Verification of a Boiler System Specification
Effects of antiferromagnetic planes on the superconducting properties of multilayered high-Tc cuprates
We propose a mechanism for high critical temperature (T_c) in the coexistent
phase of superconducting- (SC) and antiferromagnetic (AF) CuO_2 planes in
multilayered cuprates. The Josephson coupling between the SC planes separated
by an AF insulator (Mott insulator) is calculated perturbatively up to the
fourth order in terms of the hopping integral between adjacent CuO_2 planes. It
is shown that the AF exchange splitting in the AF plane suppresses the
so-called pi-Josephson coupling, and the long-ranged 0-Josephson coupling leads
to coexistence with a rather high value of T_c.Comment: 4 pages including 4 figure
Vortices and turbulence in trapped atomic condensates
After over a decade of experiments generating and studying the physics of
quantized vortices in atomic gas Bose-Einstein condensates, research is
beginning to focus on the roles of vortices in quantum turbulence, as well as
other measures of quantum turbulence in atomic condensates. Such research
directions have the potential to uncover new insights into quantum turbulence,
vortices and superfluidity, and also explore the similarities and differences
between quantum and classical turbulence in entirely new settings. Here we
present a critical assessment of theoretical and experimental studies in this
emerging field of quantum turbulence in atomic condensates
Dimensionally continued Oppenheimer-Snyder gravitational collapse II: solutions in odd dimensions
The Lovelock gravity extends the theory of general relativity to higher
dimensions in such a way that the field equations remain of second order. The
theory has many constant coefficients with no a priori meaning. Nevertheless it
is possible to reduce them to two, the cosmological constant and Newton's
constant. In this process one separates theories in even dimensions from
theories in odd dimensions. In a previous work gravitational collapse in even
dimensions was analysed. In this work attention is given to odd dimensions. It
is found that black holes also emerge as the final state of gravitational
collapse of a regular dust fluid.Comment: 16 pages, 3figures, latex Journal: to appear in Journal of
Mathematical Physic
Studying resist stochastics with the multivariate poisson propagation model
Progress in the ultimate performance of extreme ultraviolet resist has arguably decelerated in recent years suggesting an approach to stochastic limits both in photon counts and material parameters. Here we report on the performance of a variety of leading extreme ultraviolet resist both with and without chemical amplification. The measured performance is compared to stochastic modeling results using the Multivariate Poisson Propagation Model. The results show that the best materials are indeed nearing modeled performance limits
c-axis transport and phenomenology of the pseudo-gap state in
We measure and analyze the resistivity of
crystals for different doping . We obtain the fraction of carrier
that do not participate to the c-axis
conductivity. All the curves collapse onto a universal curve
when plotted against a reduced temperature
. We find that at the superconducting
transition is doping independent. We also show that a magnetic field up
to 14 T does not affect the degree of localization in the (a,b) planes but
widens the temperature range of the x-scaling by suppressing the
superconducting phase coherence.Comment: 11 pages, 5 figures, submitted to Phys.Rev.
The origin of phase in the interference of Bose-Einstein condensates
We consider the interference of two overlapping ideal Bose-Einstein
condensates. The usual description of this phenomenon involves the introduction
of a so-called condensate wave functions having a definite phase. We
investigate the origin of this phase and the theoretical basis of treating
interference. It is possible to construct a phase state, for which the particle
number is uncertain, but phase is known. However, how one would prepare such a
state before an experiment is not obvious. We show that a phase can also arise
from experiments using condensates in Fock states, that is, having known
particle numbers. Analysis of measurements in such states also gives us a
prescription for preparing phase states. The connection of this procedure to
questions of ``spontaneously broken gauge symmetry'' and to ``hidden
variables'' is mentioned.Comment: 22 pages 4 figure
- …
