138,868 research outputs found

    Energy spectra of vortex distributions in two-dimensional quantum turbulence

    Full text link
    We theoretically explore key concepts of two-dimensional turbulence in a homogeneous compressible superfluid described by a dissipative two-dimensional Gross-Pitaeveskii equation. Such a fluid supports quantized vortices that have a size characterized by the healing length ξ\xi. We show that for the divergence-free portion of the superfluid velocity field, the kinetic energy spectrum over wavenumber kk may be decomposed into an ultraviolet regime (kξ1k\gg \xi^{-1}) having a universal k3k^{-3} scaling arising from the vortex core structure, and an infrared regime (kξ1k\ll\xi^{-1}) with a spectrum that arises purely from the configuration of the vortices. The Novikov power-law distribution of intervortex distances with exponent -1/3 for vortices of the same sign of circulation leads to an infrared kinetic energy spectrum with a Kolmogorov k5/3k^{-5/3} power law, consistent with the existence of an inertial range. The presence of these k3k^{-3} and k5/3k^{-5/3} power laws, together with the constraint of continuity at the smallest configurational scale kξ1k\approx\xi^{-1}, allows us to derive a new analytical expression for the Kolmogorov constant that we test against a numerical simulation of a forced homogeneous compressible two-dimensional superfluid. The numerical simulation corroborates our analysis of the spectral features of the kinetic energy distribution, once we introduce the concept of a {\em clustered fraction} consisting of the fraction of vortices that have the same sign of circulation as their nearest neighboring vortices. Our analysis presents a new approach to understanding two-dimensional quantum turbulence and interpreting similarities and differences with classical two-dimensional turbulence, and suggests new methods to characterize vortex turbulence in two-dimensional quantum fluids via vortex position and circulation measurements.Comment: 19 pages, 8 figure

    CO adsorption on (111) and (100) surfaces of the Pt sub 3 Ti alloy. Evidence for parallel binding and strong activation of CO

    Get PDF
    The CO adsorption on a 40 atom cluster model of the (111) surface and a 36 atom cluster model of the (100) surface of the Pt3Ti alloy was studied. Parallel binding to high coordinate sites associated with Ti and low CO bond scission barriers are predicted for both surfaces. The binding of CO to Pt sites occurs in an upright orientation. These orientations are a consequence of the nature of the CO pi donation interactions with the surface. On the Ti sites the orbitals donate to the nearly empty Ti 3d band and the antibonding counterpart orbitals are empty. On the Pt sites, however, they are in the filled Pt 5d region of the alloy band, which causes CO to bond in a vertical orientation by 5 delta donation from the carbon end

    Effects of antiferromagnetic planes on the superconducting properties of multilayered high-Tc cuprates

    Get PDF
    We propose a mechanism for high critical temperature (T_c) in the coexistent phase of superconducting- (SC) and antiferromagnetic (AF) CuO_2 planes in multilayered cuprates. The Josephson coupling between the SC planes separated by an AF insulator (Mott insulator) is calculated perturbatively up to the fourth order in terms of the hopping integral between adjacent CuO_2 planes. It is shown that the AF exchange splitting in the AF plane suppresses the so-called pi-Josephson coupling, and the long-ranged 0-Josephson coupling leads to coexistence with a rather high value of T_c.Comment: 4 pages including 4 figure

    Vortices and turbulence in trapped atomic condensates

    Get PDF
    After over a decade of experiments generating and studying the physics of quantized vortices in atomic gas Bose-Einstein condensates, research is beginning to focus on the roles of vortices in quantum turbulence, as well as other measures of quantum turbulence in atomic condensates. Such research directions have the potential to uncover new insights into quantum turbulence, vortices and superfluidity, and also explore the similarities and differences between quantum and classical turbulence in entirely new settings. Here we present a critical assessment of theoretical and experimental studies in this emerging field of quantum turbulence in atomic condensates

    Dimensionally continued Oppenheimer-Snyder gravitational collapse II: solutions in odd dimensions

    Get PDF
    The Lovelock gravity extends the theory of general relativity to higher dimensions in such a way that the field equations remain of second order. The theory has many constant coefficients with no a priori meaning. Nevertheless it is possible to reduce them to two, the cosmological constant and Newton's constant. In this process one separates theories in even dimensions from theories in odd dimensions. In a previous work gravitational collapse in even dimensions was analysed. In this work attention is given to odd dimensions. It is found that black holes also emerge as the final state of gravitational collapse of a regular dust fluid.Comment: 16 pages, 3figures, latex Journal: to appear in Journal of Mathematical Physic

    Studying resist stochastics with the multivariate poisson propagation model

    Get PDF
    Progress in the ultimate performance of extreme ultraviolet resist has arguably decelerated in recent years suggesting an approach to stochastic limits both in photon counts and material parameters. Here we report on the performance of a variety of leading extreme ultraviolet resist both with and without chemical amplification. The measured performance is compared to stochastic modeling results using the Multivariate Poisson Propagation Model. The results show that the best materials are indeed nearing modeled performance limits

    c-axis transport and phenomenology of the pseudo-gap state in Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We measure and analyze the resistivity of Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} crystals for different doping δ\delta. We obtain the fraction of carrier η(T,δ)=ng/nTOT\eta(T,\delta) = n_g/n_{TOT} that do not participate to the c-axis conductivity. All the curves η(T,δ)\eta(T,\delta) collapse onto a universal curve when plotted against a reduced temperature x=[TΘ(δ)]/Δ(δ)x=[T-\Theta(\delta)]/\Delta^{*}(\delta). We find that at the superconducting transition ngn_g is doping independent. We also show that a magnetic field up to 14 T does not affect the degree of localization in the (a,b) planes but widens the temperature range of the x-scaling by suppressing the superconducting phase coherence.Comment: 11 pages, 5 figures, submitted to Phys.Rev.

    The origin of phase in the interference of Bose-Einstein condensates

    Get PDF
    We consider the interference of two overlapping ideal Bose-Einstein condensates. The usual description of this phenomenon involves the introduction of a so-called condensate wave functions having a definite phase. We investigate the origin of this phase and the theoretical basis of treating interference. It is possible to construct a phase state, for which the particle number is uncertain, but phase is known. However, how one would prepare such a state before an experiment is not obvious. We show that a phase can also arise from experiments using condensates in Fock states, that is, having known particle numbers. Analysis of measurements in such states also gives us a prescription for preparing phase states. The connection of this procedure to questions of ``spontaneously broken gauge symmetry'' and to ``hidden variables'' is mentioned.Comment: 22 pages 4 figure
    corecore