45 research outputs found
Völkisch und sozial? : Neonazistische Agitation gegen die neue EU-Freizügigkeit für Arbeitnehmerinnen
Wnt/β-catenin signalling pathway is crucial for the formation of many tissues and organs during development. In recent years, this pathway has also been found to regulate the biology of stem cells in the intestine and probably in other organs in adult life. Abnormal activation of Wnt/β-catenin signalling, which controls the expression of a high number of genes, is critical for the initiation and progression of most colorectal cancers. In line with this, the gene expression signature induced by activation of the Wnt/β-catenin pathway defines the intestinal stem cells present at the bottom of the crypts and also colon cancer stem cells. This supports the importance of inhibitors of the Wnt/β-catenin pathway as potential agents in colorectal cancer therapy. However, the complexity, wide activity in the organism modulating the biology of several cell types, and characteristics of this pathway have delayed the identification of suitable targets and so, the development of such inhibitors that are only now reaching the clinic.Peer reviewe
Inhibition of STAT3 signaling as critical molecular event in resveratrol-suppressed ovarian cancer cells
Development of somites and their derivatives in amphioxus, and implications for the evolution of vertebrate somites
SPROUTY2 is a β-catenin and FOXO3a target gene indicative of poor prognosis in colon cancer
SPROUTY2 (SPRY2) is an intracellular regulator of receptor tyrosine kinase signaling involved in cell growth, differentiation and tumorigenesis. Here, we show that SPRY2 is a target gene of the Wnt/β-catenin pathway that is abnormally activated in more than 90% of colon carcinomas. In human colon cancer cells, SPRY2 expression is induced by β-catenin in co-operation with the transcription factor FOXO3a instead of lymphoid enhancer factor/T-cell factor proteins. We found binding of β-catenin to the SPRY2 promoter at FOXO3a response elements. In vivo, cells marked by nuclear β-catenin and FOXO3a express SPRY2 in proliferative epithelial tissues, such as intestinal mucosa and epidermis. Consistently, inducible β-catenin deletion in mice reduced Spry2 expression in the small intestine. Moreover, SPRY2 protein expression correlated with nuclear β-catenin and FOXO3a colocalization in human colon carcinomas. Importantly, the amount of SPRY2 protein correlated with shorter overall survival of colon cancer patients. Our data reveal SPRY2 as a novel Wnt/β-catenin and FOXO3a target gene indicative of poor prognosis in colon cancer
