68,927 research outputs found

    Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach

    Get PDF
    It is still a matter of debate whether cephalopods can detect sound frequencies above 400 Hz. So far there is no proof for the detection of underwater sound above 400 Hz via a physiological approach. The controversy of whether cephalopods have a sound detection ability above 400 Hz was tested using the auditory brainstem response (ABR) approach, which has been successfully applied in fish, crustaceans, amphibians, reptiles and birds. Using ABR we found that auditory evoked potentials can be obtained in the frequency range 400 to 1500 Hz (Sepiotheutis lessoniana) and 400 to 1000 Hz (Octopus vulgaris), respectively. The thresholds of S. lessoniana were generally lower than those of O. vulgaris

    Thermoelectric properties of Ba-Cu-Si clathrates

    Full text link
    Thermoelectric properties of the type-I clathrates Ba8_8Cux_xSi46x_{46-x} (3.6x73.6 \leq x \leq 7, xx = nominal Cu content) are investigated both experimentally and theoretically. The polycrystalline samples are prepared either by melting, ball milling and hot pressing or by melt spinning, hand milling and hot pressing techniques. Temperature-dependent electrical resistivity, ρ(T)\rho(T), and the Seebeck coefficient, S(T)S(T), measurements reveal metal-like behavior for all samples. For x=5x = 5 and 6, density functional theory calculations are performed for deriving the enthalpy of formation and the electronic structure which is exploited for the calculation of Seebeck coefficients and conductivity within Boltzmann's transport theory. For simulating the properties of doped clathrates the rigid band model is applied. On the basis of the density functional theory results the experimentally observed compositional dependence of ρ(T)\rho(T) and S(T)S(T) of the whole sample series is analyzed. The highest dimensionless thermoelectric figure of merit ZTZT of 0.28 is reached for a melt-spun sample at 600600^{\circ}C. The relatively low ZTZT values in this system are attributed to the too high charge carrier concentrations.Comment: 11 pages, 13 figures, submitted to Phys. Rev.

    Hubble Space Telescope images of submillimeter sources: large, irregular galaxies at high redshift

    Full text link
    We present new Hubble Space Telescope STIS, high-resolution optical imaging of a sample of 13 submillimeter (submm) luminous galaxies, for which the optical emission has been pinpointed either through radio-1.4 GHz or millimeter interferometry. We find a predominance of irregular and complex morphologies in the sample, suggesting that mergers are likely common for submm galaxies. The component separation in these objects are on average a factor two larger than local galaxies with similarly high bolometric luminosities. The sizes and star formation rates of the submm galaxies are consistent with the maximal star formation rate densities of 20 Msun kpc^{-2} in local starburst galaxies (Lehnert & Heckman 1996). We derive quantitative morphological information for the optical galaxies hosting the submm emission; total and isophotal magnitudes, Petrosian radius, effective radius, concentration, aspect ratio, surface brightness, and asymmetry. We compare these morphological indices with those of other galaxies lying within the same STIS images. Most strikingly, we find ~70% of the submm galaxies to be extraordinarily large and elongated relative to the field population, regardless of optical magnitude. Comparison of the submm galaxy morphologies with those of optically selected galaxies at z~2-3 reveal the submm galaxies to be a morphologically distinct population, with generally larger sizes, higher concentrations and more prevalent major-merger configurations.Comment: 16 pages, 6 figures, scheduled for ApJ, v599, Dec10, 2003. Minor edits. For version with higher resolution figures, see http://www.submm.caltech.edu/~schapman/ms_v3.ps.g

    Decoupling of the superconducting and magnetic (structural) phase transitions in electron-doped BaFe2As2

    Full text link
    Study and comparison of over 30 examples of electron doped BaFe2As2 for transition metal (TM) = Co, Ni, Cu, and (Co/Cu mixtures) have lead to an understanding that the suppression of the structural/antiferromagnetic phase transition to low enough temperature in these compounds is a necessary condition for superconductivity, but not a sufficient one. Whereas the structural/antiferromagnetic transitions are suppressed by the number of TM dopant ions (or changes in the c-axis) the superconducting dome exists over a limited range of values of the number of electrons added by doping (or values of the {a/c} ratio). By choosing which combination of dopants are used we can change the relative positions of the upper phase lines and the superconducting dome, even to the extreme limit of suppressing the upper structural and magnetic phase transitions without the stabilization of low temperature superconducting dome

    Efficient kk-separability criteria for mixed multipartite quantum states

    Full text link
    We investigate classification and detection of entanglement of multipartite quantum states in a very general setting, and obtain efficient kk-separability criteria for mixed multipartite states in arbitrary dimensional quantum systems. These criteria can be used to distinguish n1n-1 different classes of multipartite inseparable states and can detect many important multipartite entangled states such as GHZ states, W states, anti W states, and mixtures thereof. They detect kk-nonseparable nn-partite quantum states which have previously not been identified. Here k=2,3,,nk=2,3,\cdots,n. No optimization or eigenvalue evaluation is needed, and our criteria can be evaluated by simple computations involving components of the density matrix. Most importantly, they can be implemented in today's experiments by using at most O(n2)\mathcal{O}(n^2) local measurements.Comment: 6 pages, 4 figure

    Anisotropic Polarizability of Ultracold Polar 40^{40}K87^{87}Rb Molecules

    Full text link
    We report the measurement of the anisotropic AC polarizability of ultracold polar 40^{40}K87^{87}Rb molecules in the ground and first rotationally excited states. Theoretical analysis of the polarizability agrees well with experimental findings. Although the polarizability can vary by more than 30%, a "magic" angle between the laser polarization and the quantization axis is found where the polarizability of the N=0,mN=0>|N=0,m_N=0> and the N=1,mN=0>|N=1,m_N=0> states match. At this angle, rotational decoherence due to the mismatch in trapping potentials is eliminated, and we observe a sharp increase in the coherence time. This paves the way for precise spectroscopic measurements and coherent manipulations of rotational states as a tool in the creation and probing of novel quantum many-body states of polar molecules.Comment: 4 pages for main text, 4 figures, 2 pages for supplementary informatio

    Nanoplasmonics beyond Ohm's law

    Full text link
    In tiny metallic nanostructures, quantum confinement and nonlocal response change the collective plasmonic behavior with important consequences for e.g. field-enhancement and extinction cross sections. We report on our most recent developments of a real-space formulation of an equation-of-motion that goes beyond the common local-response approximation and use of Ohm's law as the central constitutive equation. The electron gas is treated within a semi-classical hydrodynamic model with the emergence of a new intrinsic length scale. We briefly review the new governing wave equations and give examples of applying the nonlocal framework to calculation of extinction cross sections and field enhancement in isolated particles, dimers, and corrugated surfaces.Comment: Invited paper for TaCoNa-Photonics 2012 (www.tacona-photonics.org), to appear in AIP Conf. Pro

    Prediction of triple point fermions in simple half-Heusler topological insulators

    Full text link
    We predict the existence of triple point fermions in the band structure of several half-Heusler topological insulators by ab initioab~initio calculations and the Kane model. We find that many half-Heusler compounds exhibit multiple triple points along four independent C3C_3 axes, through which the doubly degenerate conduction bands and the nondegenerate valence band cross each other linearly nearby the Fermi energy. When projected from the bulk to the (111) surface, most of these triple points are located far away from the surface Γˉ\bar{\Gamma} point, as distinct from previously reported triple point fermion candidates. These isolated triple points give rise to Fermi arcs on the surface, that can be readily detected by photoemission spectroscopy or scanning tunneling spectroscopy.Comment: 6 pages, 3 figures. The supplementary information is attached in the latex packag
    corecore