239 research outputs found
Emergent quantum confinement at topological insulator surfaces
Bismuth-chalchogenides are model examples of three-dimensional topological
insulators. Their ideal bulk-truncated surface hosts a single spin-helical
surface state, which is the simplest possible surface electronic structure
allowed by their non-trivial topology. They are therefore widely
regarded ideal templates to realize the predicted exotic phenomena and
applications of this topological surface state. However, real surfaces of such
compounds, even if kept in ultra-high vacuum, rapidly develop a much more
complex electronic structure whose origin and properties have proved
controversial. Here, we demonstrate that a conceptually simple model,
implementing a semiconductor-like band bending in a parameter-free
tight-binding supercell calculation, can quantitatively explain the entire
measured hierarchy of electronic states. In combination with circular dichroism
in angle-resolved photoemission (ARPES) experiments, we further uncover a rich
three-dimensional spin texture of this surface electronic system, resulting
from the non-trivial topology of the bulk band structure. Moreover, our study
reveals how the full surface-bulk connectivity in topological insulators is
modified by quantum confinement.Comment: 9 pages, including supplementary information, 4+4 figures. A high
resolution version is available at
http://www.st-andrews.ac.uk/~pdk6/pub_files/TI_quant_conf_high_res.pd
Nearly-free-electron system of monolayer Na on the surface of single-crystal HfSe2
The electronic structure of a single Na monolayer on the surface of single-crystal HfSe2 is investigate dusing angle-resolved photoemission spectroscopy. We find that this system exhibits analmost perfect “nearly-free-electron” behavior with an extracted effective mass of ∼1me, in contrast to heavier masses found previously for alkali metal monolayers on other substrates. Our density functional-theory calculations indicate that this is due to the large lattice constant, causing both exchange and correlation interactions to be suppressed, and to the weak hybridization between the overlayer and the substrate. This is therefore an ideal model system for understanding the properties of two-dimensional materials.PostprintPeer reviewe
Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi2Se3
Topological insulators are a recently discovered class of materials with
fascinating properties: While the inside of the solid is insulating,
fundamental symmetry considerations require the surfaces to be metallic. The
metallic surface states show an unconventional spin texture, electron dynamics
and stability. Recently, surfaces with only a single Dirac cone dispersion have
received particular attention. These are predicted to play host to a number of
novel physical phenomena such as Majorana fermions, magnetic monopoles and
unconventional superconductivity. Such effects will mostly occur when the
topological surface state lies in close proximity to a magnetic or electric
field, a (superconducting) metal, or if the material is in a confined geometry.
Here we show that a band bending near to the surface of the topological
insulator BiSe gives rise to the formation of a two-dimensional
electron gas (2DEG). The 2DEG, renowned from semiconductor surfaces and
interfaces where it forms the basis of the integer and fractional quantum Hall
effects, two-dimensional superconductivity, and a plethora of practical
applications, coexists with the topological surface state in BiSe. This
leads to the unique situation where a topological and a non-topological, easily
tunable and potentially superconducting, metallic state are confined to the
same region of space.Comment: 12 pages, 3 figure
Direct observation of spin-polarised bulk bands in an inversion-symmetric semiconductor
Methods to generate spin-polarised electronic states in non-magnetic solids
are strongly desired to enable all-electrical manipulation of electron spins
for new quantum devices. This is generally accepted to require breaking global
structural inversion symmetry. In contrast, here we present direct evidence
from spin- and angle-resolved photoemission spectroscopy for a strong spin
polarisation of bulk states in the centrosymmetric transition-metal
dichalcogenide WSe. We show how this arises due to a lack of inversion
symmetry in constituent structural units of the bulk crystal where the
electronic states are localised, leading to enormous spin splittings up to
eV, with a spin texture that is strongly modulated in both real and
momentum space. As well as providing the first experimental evidence for a
recently-predicted `hidden' spin polarisation in inversion-symmetric materials,
our study sheds new light on a putative spin-valley coupling in
transition-metal dichalcogenides, of key importance for using these compounds
in proposed valleytronic devices.Comment: 6 pages, 4 figure
Hedgehog Spin-texture and Berry's Phase tuning in a Magnetic Topological Insulator
Understanding and control of spin degrees of freedom on the surfaces of
topological materials are key to future applications as well as for realizing
novel physics such as the axion electrodynamics associated with time-reversal
(TR) symmetry breaking on the surface. We experimentally demonstrate
magnetically induced spin reorientation phenomena simultaneous with a
Dirac-metal to gapped-insulator transition on the surfaces of manganese-doped
Bi2Se3 thin films. The resulting electronic groundstate exhibits unique
hedgehog-like spin textures at low energies, which directly demonstrate the
mechanics of TR symmetry breaking on the surface. We further show that an
insulating gap induced by quantum tunnelling between surfaces exhibits spin
texture modulation at low energies but respects TR invariance. These spin
phenomena and the control of their Fermi surface geometrical phase first
demonstrated in our experiments pave the way for the future realization of many
predicted exotic magnetic phenomena of topological origin.Comment: 38 pages, 18 Figures, Includes new text, additional datasets and
interpretation beyond arXiv:1206.2090, for the final published version see
Nature Physics (2012
Cross-Linking Amine-Rich Compounds into High Performing Selective CO2 Absorbents
Amine-based absorbents play a central role in CO2 sequestration and utilization. Amines react selectively with CO2, but a drawback is the unproductive weight of solvent or support in the absorbent. Efforts have focused on metal organic frameworks (MOFs) reaching extremely high CO2 capacity, but limited selectivity to N2 and CH4, and decreased uptake at higher temperatures. A desirable system would have selectivity (cf. amine) and high capacity (cf. MOF), but also increased adsorption at higher temperatures. Here, we demonstrate a proof-of-concept where polyethyleneimine (PEI) is converted to a high capacity and highly selective CO2 absorbent using buckminsterfullerene (C60) as a cross-linker. PEI-C60 (CO2 absorption of 0.14 g/g at 0.1 bar/90°C) is compared to one of the best MOFs, Mg-MOF-74 (0.06 g/g at 0.1 bar/90°C), and does not absorb any measurable amount of CH4 at 50 bar. Thus, PEI-C60 can perform better than MOFs in the sweetening of natural gas
Discrimination of roast and ground coffee aroma
Background: Four analytical approaches were used to evaluate the aroma profile at key stages in roast and ground
coffee brew preparation (concentration within the roast and ground coffee and respective coffee brew;
concentration in the headspace of the roast and ground coffee and respective brew). Each method was evaluated
by the analysis of 15 diverse key aroma compounds that were predefined by odour port analysis.
Results: Different methods offered complimentary results for the discrimination of products; the concentration in
the coffee brew was found to be the least discriminatory and concentration in the headspace above the roast and
ground coffee was shown to be most discriminatory.
Conclusions: All approaches should be taken into consideration when classifying roast and ground coffee
especially for alignment to sensory perception and consumer insight data as all offer markedly different
discrimination abilities due to the variation in volatility, hydrophobicity, air-water partition coefficient and other physicochemical parameters of the key aroma compounds present
Proinflammatory and endothelial activation profiles in hospitalized COVID-19 patients: impact of arterial hypertension and previous treatment with renin-angiotensin-aldosterone inhibitors
n/
Formation of heavy d-electron quasiparticles in Sr₃Ru₂O₇
The phase diagram of Sr3Ru2O7 shows hallmarks of strong electron correlations despite the modest Coulomb interaction in the Ru 4d shell. We use angle-resolved photoelectron spectroscopy measurements to provide microscopic insight into the formation of the strongly renormalized heavy d-electron liquid that controls the physics of Sr3Ru2O7. Our data reveal itinerant Ru 4d-states confined over large parts of the Brillouin zone to an energy range of <6 meV, nearly three orders of magnitude lower than the bare band width. We show that this energy scale agrees quantitatively with a characteristic thermodynamic energy scale associated with quantum criticality and illustrate how it arises from a combination of back-folding due to a structural distortion and the hybridization of light and strongly renormalized, heavy quasiparticle bands. The resulting heavy Fermi liquid has a marked k-dependence of the renormalization which we relate to orbital mixing along individual Fermi surface sheets
Many-body calculations of plasmon and phonon satellites in angle-resolved photoelectron spectra using the cumulant expansion approach
The interaction of electrons with crystal lattice vibrations (phonons) and
collective charge-density fluctuations (plasmons) influences profoundly the
spectral properties of solids revealed by photoemission spectroscopy
experiments. Photoemission satellites, for instance, are a prototypical example
of quantum emergent behavior that may result from the strong coupling of
electronic states to plasmons and phonons. The existence of these spectral
features has been verified over energy scales spanning several orders of
magnitude (from 50 meV to 15-20 eV) and for a broad class of compounds such as
simple metals, semiconductors, and highly-doped oxides. During the past few
years the cumulant expansion approach, alongside with the GW approximation and
the theory of electron-phonon and electron-plasmon coupling in solids, has
evolved into a predictive and quantitatively accurate approach for the
description of the spectral signatures of electron-boson coupling entirely from
first principles, and it has thus become the state-of-the-art theoretical tool
for the description of these phenomena. In this chapter we introduce the
fundamental concepts needed to interpret plasmon and phonon satellites in
photoelectron spectra, and we review recent progress on first-principles
calculations of these features using the cumulant expansion method
- …
