33 research outputs found

    Effect of Temperature on the Deformation Behavior of B2 Austenite in a Polycrystalline Ni49.9Ti50.1 (at.Percent) Shape Memory Alloy

    Get PDF
    Superelasticity in austenitic B2-NiTi is of great technical interest and has been studied in the past by several researchers [1]. However, investigation of temperature dependent deformation in B2-NiTi is equally important since competing mechanisms of stress-induced martensite (SIM), retained martensite, plastic and deformation twinning can lead to unusual mechanical behaviors. Identification of the role of various mechanisms contributing to the overall deformation response of B2-NiTi is imperative to understanding and maturing SMA-enabled technologies. Thus, the objective of this work was to study the deformation of polycrystalline Ni49.9Ti50.1 (at. %) above A(sub f) (105 C) in the B2 state at temperatures between 165-440 C, and generate a B2 deformation map showing active deformation mechanisms in different temperature-stress regimes

    Correlation between Mechanical Behavior and Actuator-type Performance of Ni-Ti-Pd High-temperature Shape Memory Alloys

    Get PDF
    High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests

    Influence of Test Procedures on the Thermomechanical Properties of a 55NiTi Shape Memory Alloy

    Get PDF
    Over the past few decades, binary NiTi shape memory alloys have received attention due to their unique mechanical characteristics, leading to their potential use in low-temperature, solid-state actuator applications. However, prior to using these materials for such applications, the physical response of these systems to mechanical and thermal stimuli must be thoroughly understood and modeled to aid designers in developing SMA-enabled systems. Even though shape memory alloys have been around for almost five decades, very little effort has been made to standardize testing procedures. Although some standards for measuring the transformation temperatures of SMA s are available, no real standards exist for determining the various mechanical and thermomechanical properties that govern the usefulness of these unique materials. Consequently, this study involved testing a 55NiTi alloy using a variety of different test methodologies. All samples tested were taken from the same heat and batch to remove the influence of sample pedigree on the observed results. When the material was tested under constant-stress, thermal-cycle conditions, variations in the characteristic material responses were observed, depending on test methodology. The transformation strain and irreversible strain were impacted more than the transformation temperatures, which only showed an affect with regard to applied external stress. In some cases, test methodology altered the transformation strain by 0.005-0.01mm/mm, which translates into a difference in work output capability of approximately 2 J/cu cm (290 in!lbf/cu in). These results indicate the need for the development of testing standards so that meaningful data can be generated and successfully incorporated into viable models and hardware. The use of consistent testing procedures is also important when comparing results from one research organization to another. To this end, differences in the observed responses will be presented, contrasted and rationalized, in hopes of eventually developing standardized testing procedures for shape memory alloys

    Macroscopic and Microstructural Aspects of the Transformation Behavior in a Polycrystalline NiTi Shape Memory Alloy

    Get PDF
    The mechanical and microstructural behavior of a polycrystalline Ni(49.9)Ti(50.1) (at.%) shape memory alloy was investigated as a function of temperature around the transformation regime. The bulk macroscopic responses, measured using ex situ tensile deformation and impulse excitation tests, were compared to the microstructural evolution captured using in situ neutron diffraction. The onset stress for inelastic deformation and dynamic Young's modulus were found to decrease with temperature, in the martensite regime, reaching a significant minimum at approximately 80 C followed by an increase in both properties, attributed to the martensite to austenite transformation. The initial decrease in material compliance during heating affected the ease with which martensite reorientation and detwinning could occur, ultimately impacting the stress for inelastic deformation prior to the start of the reverse transformation

    Role of B19 \u27 martensite deformation in stabilizing two-way shape memory behavior in NiTi

    Get PDF
    Deformation of a B19\u27 martensitic, polycrystalline Ni49.9Ti50.1 (at. %) shape memory alloy and its influence on the magnitude and stability of the ensuing two-way shape memory effect (TWSME) was investigated by combined ex situ mechanical experimentation and in situ neutron diffraction measurements at stress and temperature. The microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were captured and compared to the bulk macroscopic response of the alloy. With increasing uniaxial strain, it was observed that B19\u27 martensite deformed by reorientation and detwinning with preferred selection of the ((1) over bar 50)(M) and (010)(M) variants, (20 (1) over bar)(B19\u27) deformation twinning, and dislocation activity. These mechanisms were indicated by changes in bulk texture from the neutron diffraction measurements. Partial reversibility of the reoriented variants and deformation twins was also captured upon load removal and thermal cycling, which after isothermal deformation to strains between 6% and 22% resulted in a strong TWSME. Consequently, TWSME functional parameters including TWSME strain, strain reduction, and transformation temperatures were characterized and it was found that prior martensite deformation to 14% strain provided the optimum condition for the TWSME, resulting in a stable two-way shape memory strain of 2.2%. Thus, isothermal deformation of martensite was found to be a quick and efficient method for creating a strong and stable TWSME in Ni49.9Ti50.1

    Characterization of a New Phase and Its Effect on the Work Characteristics of a Near-Stoichiometric Ni30Pt20Ti50 High-Temperature Shape Memory Alloy (HTSMA)

    Get PDF
    A new phase observed in a nominal Ni30Pt20Ti50 (at.%) high temperature shape memory alloy has been characterized using transmission electron microscopy and 3-D atom probe tomography. This phase forms homogeneously in the B2 austenite matrix by a nucleation and growth mechanism and results in a concomitant increase in the martensitic transformation temperature of the base alloy. Although the structure of this phase typically contains a high density of faults making characterization difficult, it appears to be trigonal (-3m point group) with a(sub o) approx. 1.28 nm and c(sub o) approx. 1.4 nm. Precipitation of this phase increases the microhardness of the alloy substantially over that of the solution treated and quenched single-phase material. The effect of precipitation strengthening on the work characteristics of the alloy has been explored through load-biased strain-temperature testing in the solution-treated condition and after aging at 500 C for times ranging from 1 to 256 hours. Work output was found to increase in the aged alloy as a result of an increase in transformation strain, but was not very sensitive to aging time. The amount of permanent deformation that occurred during thermal cycling under load was small but increased with increasing aging time and stress. Nevertheless, the dimensional stability of the alloy at short aging times (1-4 hours) was still very good making it a potentially useful material for high-temperature actuator applications

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    Clinical features and outcomes of elderly hospitalised patients with chronic obstructive pulmonary disease, heart failure or both

    Get PDF
    Background and objective: Chronic obstructive pulmonary disease (COPD) and heart failure (HF) mutually increase the risk of being present in the same patient, especially if older. Whether or not this coexistence may be associated with a worse prognosis is debated. Therefore, employing data derived from the REPOSI register, we evaluated the clinical features and outcomes in a population of elderly patients admitted to internal medicine wards and having COPD, HF or COPD + HF. Methods: We measured socio-demographic and anthropometric characteristics, severity and prevalence of comorbidities, clinical and laboratory features during hospitalization, mood disorders, functional independence, drug prescriptions and discharge destination. The primary study outcome was the risk of death. Results: We considered 2,343 elderly hospitalized patients (median age 81 years), of whom 1,154 (49%) had COPD, 813 (35%) HF, and 376 (16%) COPD + HF. Patients with COPD + HF had different characteristics than those with COPD or HF, such as a higher prevalence of previous hospitalizations, comorbidities (especially chronic kidney disease), higher respiratory rate at admission and number of prescribed drugs. Patients with COPD + HF (hazard ratio HR 1.74, 95% confidence intervals CI 1.16-2.61) and patients with dementia (HR 1.75, 95% CI 1.06-2.90) had a higher risk of death at one year. The Kaplan-Meier curves showed a higher mortality risk in the group of patients with COPD + HF for all causes (p = 0.010), respiratory causes (p = 0.006), cardiovascular causes (p = 0.046) and respiratory plus cardiovascular causes (p = 0.009). Conclusion: In this real-life cohort of hospitalized elderly patients, the coexistence of COPD and HF significantly worsened prognosis at one year. This finding may help to better define the care needs of this population
    corecore