986 research outputs found
Activation volume of selected liquid crystals in the density scaling regime
In this paper, we demonstrate and thoroughly analyze the activation volumetric properties of selected liquid crystals in the nematic and crystalline E phases in comparison with those reported for glass-forming liquids. In the analysis, we have employed and evaluated two entropic models (based on either total or configurational entropies) to describe the longitudinal relaxation times of the liquid crystals in the density scaling regime. In this study, we have also exploited two equations of state: volumetric and activation volumetric ones. As a result, we have established that the activation volumetric properties of the selected liquid crystals are quite opposite to such typical properties of glass-forming materials, i.e., the activation volume decreases and the isothermal bulk modulus increases when a liquid crystal is isothermally compressed. Using the model based on the configurational entropy, we suggest that the increasing pressure dependences of the activation volume in isothermal conditions and the negative curvature of the pressure dependences of isothermal longitudinal relaxation times can be related to the formation of antiparallel doublets in the examined liquid crystals. A similar pressure effect on relaxation dynamics may be also observed for other material groups in case of systems, the molecules of which form some supramolecular structures
Operating manual for the RRL 8 channel data logger
A data collection device which takes measurements from external sensors at user specified time intervals is described. Three sensor ports are dedicated to temperature, air pressure, and dew point. Five general purpose sensor ports are provided. The user specifies when the measurements are recorded as well as when the information is read or stored in a minicomputer or a paper tape
Impact of alternative solid state forms and specific surface area of high-dose, hydrophilic active pharmaceutical ingredients on tabletability
YesIn order to investigate the effect of using different
solid state forms and specific surface area (TBET) of active
pharmaceutical ingredients on tabletability and dissolution
performance, the mono- and dihydrated crystalline forms of
chlorothiazide sodium and chlorothiazide potassium (CTZK)
salts were compared to alternative anhydrous and amorphous
forms, as well as to amorphous microparticles of chlorothiazide
sodium and potassium which were produced by spray drying and
had a large specific surface area. The tablet hardness and tensile
strength, porosity, and specific surface area of single-component,
convex tablets prepared at different compression pressures were characterized. Results confirmed the complexity of the
compressibility mechanisms. In general it may be concluded that factors such as solid-state form (crystalline vs amorphous), type
of hydration (presence of interstitial molecules of water, dehydrates), or specific surface area of the material have a direct impact
on the tabletability of the powder. It was observed that, for powders of the same solid state form, those with a larger specific
surface area compacted well, and better than powders of a lower surface area, even at relatively low compression pressures.
Compacts prepared at lower compression pressures from high surface area porous microparticles presented the shortest times to
dissolve, when compared with compacts made of equivalent materials, which had to be compressed at higher compression
pressures in order to obtain satisfactory compacts. Therefore, materials composed of nanoparticulate microparticles (NPMPs)
may be considered as suitable for direct compaction and possibly for inclusion in tablet formulations as bulking agents, APIs,
carriers, or binders due to their good compactibility performanceSolid State Pharmaceutical Cluster (SSPC), supported by Science Foundation Ireland under Grant No. 07/SRC/B1158
Molecular dynamics and physical stability of amorphous nimesulide drug and its binary drug-polymer systems
yesIn this paper we study the effectiveness of three well known polymers: inulin, Soluplus and PVP in stabilizing amorphous form of nimesulide (NMS) drug. The re-crystallization tendency of pure drug as well as measured drug-polymer systems were examined at isothermal conditions by using broadband dielectric spectroscopy (BDS), and at non-isothermal conditions by differential scanning calorimetry (DSC). Our investigation has shown that the crystallization half-life time of pure NMS at 328 K is equal to 33 minutes. We found that this time can be prolonged to 40 years after adding to NMS 20% of PVP polymer. This polymer proved to be the best NMS’s stabilizer, while the worst stabilization effect was found after adding the inulin to NMS. Additionally, our DSC, BDS and FTIR studies indicate that for suppression of NMS’s re-crystallization in NMS-PVP system, the two mechanisms are responsible: the polymeric steric hindrances as well as the antiplastization effect excerted by the excipient.The authors J.K., Z.W., K.G. and M.P., are grateful for the financial support received within the Project No. 2015/16/W/NZ7/00404 (SYMFONIA 3) from the National Science Centre, Poland. H.M. and L.T. are supported by Science Foundation Ireland under grant No. 12/RC/2275 (Synthesis and Solid State Pharmaceuticals Centre)
Acelerando o processo de detecção de espécies ameaçadas através de avaliações expeditas.
Disponível online. Resumo
Glass transition of an epoxy resin induced by temperature, pressure and chemical conversion: a configurational entropy rationale
A comparative study is reported on the dynamics of a glass-forming epoxy
resin when the glass transition is approached through different paths: cooling,
compression, and polymerization. In particular, the influence of temperature,
pressure and chemical conversion on the dynamics has been investigated by
dielectric spectroscopy. Deep similarities are found in dynamic properties. A
unified reading of our experimental results for the structural relaxation time
is given in the framework of the Adam-Gibbs theory. The quantitative agreement
with the experimental data is remarkable, joined with physical values of the
fitting parameters. In particular, the fitting function of the isothermal
tau(P) data gives a well reasonable prediction for the molar thermal expansion
of the neat system, and the fitting function of the isobaric-isothermal tau(C)
data under step- polymerization conforms to the prediction of diverging tau at
complete conversion of the system.Comment: 16 pages, 8 figures, from the talk given at the 4th International
Discussion Meeting on Relaxations in Complex Systems (IDMRCS), Hersonissos,
Helaklion, Crete (Greece), 17-23 June 200
Formation and physicochemical properties of crystalline and amorphous salts with different stoichiometries formed between ciprofloxacin and succinic acid
YesMulti-ionizable compounds, such as dicarboxylic
acids, offer the possibility of forming salts of drugs with
multiple stoichiometries. Attempts to crystallize ciprofloxacin,
a poorly water-soluble, amphoteric molecule with succinic acid
(S) resulted in isolation of ciprofloxacin hemisuccinate (1:1)
trihydrate (CHS-I) and ciprofloxacin succinate (2:1) tetrahydrate
(CS-I). Anhydrous ciprofloxacin hemisuccinate (CHS-II)
and anhydrous ciprofloxacin succinate (CS-II) were also
obtained. It was also possible to obtain stoichiometrically
equivalent amorphous salt forms, CHS-III and CS-III, by spray
drying and milling, respectively, of the drug and acid. Anhydrous CHS and CS had melting points at ∼215 and ∼228 °C, while
the glass transition temperatures of CHS-III and CS-III were ∼101 and ∼79 °C, respectively. Dynamic solubility studies revealed
the metastable nature of CS-I in aqueous media, resulting in a transformation of CS-I to a mix of CHS-I and ciprofloxacin 1:3.7
hydrate, consistent with the phase diagram. CS-III was observed to dissolve noncongruently leading to high and sustainable drug
solution concentrations in water at 25 and 37 °C, with the ciprofloxacin concentration of 58.8 ± 1.18 mg/mL after 1 h of the
experiment at 37 °C. This work shows that crystalline salts with multiple stoichiometries and amorphous salts have diverse
pharmaceutically relevant properties, including molecular, solid state, and solubility characteristics.Solid State Pharmaceutical Cluster (SSPC), supported by Science Foundation Ireland under grant number 07/SRC/ B1158
Effect of entropy on the dynamics of supercooled liquids: New results from high pressure data
We show that for arbitrary thermodynamic conditions, master curves of the
entropy are obtained by expressing S(T,V) as a function of TV^g_G, where T is
temperature, V specific volume, and g_G the thermodynamic Gruneisen parameter.
A similar scaling is known for structural relaxation times,tau = f(TV^g);
however, we find g_G < g. We show herein that this inequality reflects
contributions to S(T,V) from processes, such as vibrations and secondary
relaxations, that do not directly influence the supercooled dynamics. An
approximate method is proposed to remove these contributions, S_0, yielding the
relationship tau = f(S-S_0).Comment: 10 pages 7 figure
Fast relaxation in a fragile liquid under pressure
The incoherent dynamic structure factor of ortho-terphenyl has been measured
by neutron time-of-flight and backscattering technique in the pressure range
from 0.1 MPa to 240 MPa for temperatures between 301 K and 335 K.
Tagged-particle correlations in the compressed liquid decay in two steps. The
alpha-relaxation lineshape is independent of pressure, and the relaxation time
proportional to viscosity. A kink in the amplitude f_Q(P) reveals the onset of
beta relaxation. The beta-relaxation regime can be described by the
mode-coupling scaling function; amplitudes and time scales allow a consistent
determination of the critical pressure P_c(T). alpha and beta relaxation depend
in the same way on the thermodynamic state; close to the mode-coupling
cross-over, this dependence can be parametrised by an effective coupling Gamma
~ n*T**{-1/4}.Comment: 4 Pages of RevTeX, 4 figures (submitted to Physical Review Letters
- …
