4,251 research outputs found

    Finite-temperature behavior of the Bose polaron

    Full text link
    We consider a mobile impurity immersed in a Bose gas at finite temperature. Using perturbation theory valid for weak coupling between the impurity and the bosons, we derive analytical results for the energy and damping of the impurity for low and high temperatures, as well as for temperatures close to the critical temperature TcT_c for Bose-Einstein condensation. These results show that the properties of the impurity vary strongly with temperature. In particular, the energy exhibits a non-monotonic behavior close to TcT_c, and the damping rises sharply close to TcT_c. We argue that this behaviour is generic for impurities immersed in an environment undergoing a phase transition that breaks a continuous symmetry. Finally, we discuss how these effects can be detected experimentally.Comment: 10 pages and 6 figure

    Teaching schools evaluation. Research Brief

    Get PDF
    This Research Brief reports the findings from a two-year study (2013-15) in to the work of teaching schools and their alliances commissioned by the National College for Teaching and Leadership (NCTL). The broad aim of the study was to investigate the effectiveness and impact of teaching schools on improvement, and identify the quality and scope of external support that are required to enhance these . This was achieved through combining qualitative and quantitative data collection and analysis derived from three research activities: case studies of 26 teaching schools alliances (TSAs), a national survey of the first three cohorts of 345 TSAs, and secondary research and analysis of national performance and inspection results

    Reduced Retinal Microvascular Density, Improved Forepaw Reach, Comparative Microarray and Gene Set Enrichment Analysis with c-jun Targeting DNA Enzyme

    Get PDF
    Retinal neovascularization is a critical component in the pathogenesis of common ocular disorders that cause blindness, and treatment options are limited. We evaluated the therapeutic effect of a DNA enzyme targeting c-jun mRNA in mice with pre-existing retinal neovascularization. A single injection of Dz13 in a lipid formulation containing N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine inhibited c-Jun expression and reduced retinal microvascular density. The DNAzyme inhibited retinal microvascular density as effectively as VEGF-A antibodies. Comparative microarray and gene expression analysis determined that Dz13 suppressed not only c-jun but a range of growth factors and matrix-degrading enzymes. Dz13 in this formulation inhibited microvascular endothelial cell proliferation, migration and tubule formation in vitro. Moreover, animals treated with Dz13 sensed the top of the cage in a modified forepaw reach model, unlike mice given a DNAzyme with scrambled RNA-binding arms that did not affect c-Jun expression. These findings demonstrate reduction of microvascular density and improvement in forepaw reach in mice administered catalytic DNA.This work was supported by grants from Cancer Institute NSW and the National Health and Medical Research Council (NHMRC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Pairing in spin polarized two-species fermionic mixtures with mass asymmetry

    Full text link
    We discuss on the pairing mechanism of fermions with mismatch in their fermi momenta due to a mass asymmetry. Using a variational ansatz for the ground state we also discuss the BCS -BEC crossover of this system. It is shown that the breached pairing solution with a single fermi surface is stable in the BEC regime. We also include the temperatures effect on the fermion pairing within an approximation that is valid for temperatures much below the critical temperature.Comment: 8 pages and 6 figures, few typos corrected, version to appear in EPJ

    Observation of an orbital interaction-induced Feshbach resonance in 173-Yb

    Full text link
    We report on the experimental observation of a novel inter-orbital Feshbach resonance in ultracold 173-Yb atoms, which opens the possibility of tuning the interactions between the 1S0 and 3P0 metastable state, both possessing vanishing total electronic angular momentum. The resonance is observed at experimentally accessible magnetic field strengths and occurs universally for all hyperfine state combinations. We characterize the resonance in the bulk via inter-orbital cross-thermalization as well as in a three-dimensional lattice using high-resolution clock-line spectroscopy.Comment: 5 pages, 4 figure

    A Dual Read-Out Assay to Evaluate the Potency of Compounds Active against Mycobacterium tuberculosis

    Get PDF
    PMCID: PMC3617142This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
    corecore