296 research outputs found

    Landscape science: a Russian geographical tradition

    Get PDF
    The Russian geographical tradition of landscape science (landshaftovedenie) is analyzed with particular reference to its initiator, Lev Semenovich Berg (1876-1950). The differences between prevailing Russian and Western concepts of landscape in geography are discussed, and their common origins in German geographical thought in the late nineteenth and early twentieth centuries are delineated. It is argued that the principal differences are accounted for by a number of factors, of which Russia's own distinctive tradition in environmental science deriving from the work of V. V. Dokuchaev (1846-1903), the activities of certain key individuals (such as Berg and C. O. Sauer), and the very different social and political circumstances in different parts of the world appear to be the most significant. At the same time it is noted that neither in Russia nor in the West have geographers succeeded in specifying an agreed and unproblematic understanding of landscape, or more broadly in promoting a common geographical conception of human-environment relationships. In light of such uncertainties, the latter part of the article argues for closer international links between the variant landscape traditions in geography as an important contribution to the quest for sustainability

    Phytoplankton competition in deep biomass maximum

    Full text link
    Resource competition in heterogeneous environments is still an unresolved problem of theoretical ecology. In this article I analyze competition between two phytoplankton species in a deep water column, where the distributions of main resources (light and a limiting nutrient) have opposing gradients and co-limitation by both resources causes a deep biomass maximum. Assuming that the species have a trade-off in resource requirements and the water column is weakly mixed, I apply the invasion threshold analysis (Ryabov and Blasius 2011) to determine relations between environmental conditions and phytoplankton composition. Although species deplete resources in the interior of the water column, the resource levels at the bottom and surface remain high. As a result, the slope of resources gradients becomes a new crucial factor which, rather than the local resource values, determines the outcome of competition. The value of resource gradients nonlinearly depend on the density of consumers. This leads to complex relationships between environmental parameters and species composition. In particular, it is shown that an increase of both the incident light intensity or bottom nutrient concentrations favors the best light competitors, while an increase of the turbulent mixing or background turbidity favors the best nutrient competitors. These results might be important for prediction of species composition in deep ocean.Comment: 13 pages, 7 figures; Theoretical Ecology 201

    Sacral agenesis associated with teratoma: report of a case

    Full text link
    A case of a 29-year-old male with a huge sacrococcygeal teratoma completely removed by surgery, and associated with a sacral agenesis is reported. Roentengenograms revealed fusion of the T12, LI, L2 and L3 vertebral bodies, absence of the left 12th rib, partial agenesis of sacrococcygeal elements and a lumbar scoliosis convex to the left. Cystometry and myelograms were normal. No such association has been found in the literature reviewed. Some topics on the embryology of these lesions are discussed

    Genetic Background Strongly Modifies the Severity of Symptoms of Hirschsprung Disease, but Not Hearing Loss in Rats Carrying Ednrbsl Mutations

    Get PDF
    Hirschsprung disease (HSCR) is thought to result as a consequence of multiple gene interactions that modulate the ability of enteric neural crest cells to populate the developing gut. However, it remains unknown whether the single complete deletion of important HSCR-associated genes is sufficient to result in HSCR disease. In this study, we found that the null mutation of the Ednrb gene, thought indispensable for enteric neuron development, is insufficient to result in HSCR disease when bred onto a different genetic background in rats carrying Ednrbsl mutations. Moreover, we found that this mutation results in serious congenital sensorineural deafness, and these strains may be used as ideal models of Waardenburg Syndrome Type 4 (WS4). Furthermore, we evaluated how the same changed genetic background modifies three features of WS4 syndrome, aganglionosis, hearing loss, and pigment disorder in these congenic strains. We found that the same genetic background markedly changed the aganglionosis, but resulted in only slight changes to hearing loss and pigment disorder. This provided the important evidence, in support of previous studies, that different lineages of neural crest-derived cells migrating along with various pathways are regulated by different signal molecules. This study will help us to better understand complicated diseases such as HSCR and WS4 syndrome

    Colourful coexistence of red and green picocyanobacteria in lakes and seas

    Get PDF
    Hutchinson's paradox of the plankton inspired many studies on the mechanisms of species coexistence. Recent laboratory experiments showed that partitioning of white light allows stable coexistence of red and green picocyanobacteria. Here, we investigate to what extent these laboratory findings can be extrapolated to natural waters. We predict from a parameterized competition model that the underwater light colour of lakes and seas provides ample opportunities for coexistence of red and green phytoplankton species. To test this prediction, we sampled picocyanobacteria of 70 aquatic ecosystems, ranging from clear blue oceans to turbid brown peat lakes. As predicted, red picocyanobacteria dominated in clear waters, whereas green picocyanobacteria dominated in turbid waters. We found widespread coexistence of red and green picocyanobacteria in waters of intermediate turbidity. These field data support the hypothesis that niche differentiation along the light spectrum promotes phytoplankton biodiversity, thus providing a colourful solution to the paradox of the plankton

    Ten principles of heterochromatin formation and function

    Get PDF
    Heterochromatin is a critical architectural unit of eukaryotic chromosomes. It endows particular genomic domains with specific functional properties. Critical is the role of heterochromatin in genomic stability, which is mediated by its ability to restrain mobile elements, isolate repair events in repetitive regions, and to contribute to the formation of structures that ensure accurate chromosome segregation. This distinctive chromatin also contributes to developmental regulation by restricting the accessible compartment of the genome in specific lineages. The establishment and maintenance mechanisms that mediate heterochromatin assembly are separable and involve the ability of sequence-specific factors, modified chromatin and nascent transcript-bound proteins to recruit chromatin-modifying enzymes. Heterochromatin can spread along the chromatin fiber from nucleation sites and also mediates its own epigenetic inheritance through cell division, yet these propensities are normally strongly repressed. Due to its central importance in chromosome biology, heterochromatin plays key roles in the pathogenesis of various human diseases. In this article, we derive these broadly conserved principles of heterochromatin formation and function using selected examples from studies of a range of eukaryotic model organisms from yeast to man, with an emphasis on insights obtained from unicellular systems

    Challenges in microbial ecology: building predictive understanding of community function and dynamics.

    Get PDF
    The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth's soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development with mathematical model building. We discuss specific examples where model-experiment integration has already resulted in important insights into MC function and structure. We also highlight key research questions that still demand better integration of experiments and models. We argue that such integration is needed to achieve significant progress in our understanding of MC dynamics and function, and we make specific practical suggestions as to how this could be achieved
    corecore