10 research outputs found
Evidence for the existence of an oligomeric, non-DNA-binding complex of the progesterone receptor in the cytoplasm
Steroid receptors are found as a hetero-oligomeric complex in cell extracts. Due to the dynamic interaction between receptor-associated proteins and receptors, it is difficult to study the oligomeric complex in living cells. Here this was attempted in cells in which the interaction was stabilized by introducing molybdate into the cells or by incubating the cells at low temperature. The complex was studied with an antibody (aD) recognizing only the dissociated form of the chicken progesterone receptor (PR) and with antibodies (PR22, PR6). Recognizing also oligomeric forms of the receptor. When wild-type chicken PR was transfected, all antibodies showed nuclear staining. Molybdate or cold treatment of cells resulted in cytoplasmic accumulation of the PR as detected with PR22/PR6. aD, however, stained predominantly the nuclear PR in treated cells. These findings suggest that when the oligomeric complex of the PR is stabilized in intact cells in vivo and then crosslinked with paraformaldehyde, a portion of the cytoplasmic receptor is seen as an oligomeric complex, whereas, in the nucleus, most, if not all receptor molecules are in dissociated form
Assoziations- und Phasengleichgewichte bei der Einwirkung von Paraffinkettenalkoholen an wässrigen Lösungen von Assoziationskolloiden
Association of sodium ions to aqueous alkylsulfate and alkanoate micelles in the presence of 1-alcohols
Membranes for Kraft black liquor concentration and chemical recovery: Current progress, challenges, and opportunities
Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore
In the absence of hormone, corticosteroid receptors such as GR (glucocorticoid receptor) and MR (mineralocorticoid receptor) are primarily located in the cytoplasm. Upon steroid-binding, they rapidly accumulate in the nucleus. Regardless of their primary location, these receptors and many other nuclear factors undergo a constant and dynamic nucleocytoplasmic shuttling. All members of the steroid receptor family are known to form large oligomeric structures with the heat-shock proteins of 90-kDa (hsp90) and 70-kDa (hsp70), the small acidic protein p23, and a tetratricopeptide repeat (TPR)-domain protein such as FK506-binding proteins (FKBPs), cyclophilins (CyPs) or the serine/threonine protein phosphatase 5 (PP5). It has always been stated that the dissociation of the chaperone heterocomplex (a process normally referred to as receptor “transformation”) is the first step that permits the nuclear import of steroid receptors. However the experimental evidence is consistent with a model where the chaperone machinery is required for the retrotransport of the receptor through the cytoplasm and also facilitates the passage through the nuclear pore. Recent evidence indicates that the hsp90-based chaperone system also interacts with structures of the nuclear pore such as importin β and the integral nuclear pore glycoprotein Nup62 facilitating the passage of the untransformed receptor through the nuclear pore
