260 research outputs found

    Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic Ocean Ridge (ODP Hole 1274A): Influence of hydrothermal and magmatic processes

    Get PDF
    Highly depleted harzburgites and dunites were recovered from ODP Hole 1274A, near the intersection between the Mid-Atlantic Ocean Ridge and the 15°20′N Fracture Zone. In addition to high degrees of partial melting, these peridotites underwent multiple episodes of melt-rock reaction and intense serpentinization and seawater alteration close to the seafloor. Low concentrations of Se, Cu and platinum-group elements (PGE) in harzburgites drilled at around 35-85 m below seafloor are consistent with the consumption of mantle sulfides after high degrees (>15-20 %) of partial melting and redistribution of chalcophile and siderophile elements into PGE-rich residual microphases. Higher concentrations of Cu, Se, Ru, Rh and Pd in harzburgites from the uppermost and lowest cores testify to late reaction with a sulfide melt. Dunites were formed by percolation of silica- and sulfur-undersaturated melts into low-Se harzburgites. Platinum-group and chalcophile elements were not mobilized during dunite formation and mostly preserve the signature of precursor harzburgites, except for higher Ru and lower Pt contents caused by precipitation and removal of platinum-group minerals. During serpentinization at low temperature (<250 °C) and reducing conditions, mantle sulfides experienced desulfurization to S-poor sulfides (mainly heazlewoodite) and awaruite. Contrary to Se and Cu, sulfur does not record the magmatic evolution of peridotites but was mostly added in hydrothermal sulfides and sulfate from seawater. Platinum-group elements were unaffected by post-magmatic low-temperature processes, except Pt and Pd that may have been slightly remobilized during oxidative seawater alteration

    Neuregulin 3 promotes excitatory synapse formation on hippocampal interneurons

    Get PDF
    Hippocampal GABAergic interneurons are crucial for cortical network function and have been implicated in psychiatric disorders. We show here that Neuregulin 3 (Nrg3), a relatively little investigated low-affinity ligand, is a functionally dominant interaction partner of ErbB4 in parvalbumin-positive (PV) interneurons. Nrg3 and ErbB4 are located pre- and postsynaptically, respectively, in excitatory synapses on PV interneurons in vivo. Additionally, we show that ablation of Nrg3 results in a similar phenotype as the one described for ErbB4 ablation, including reduced excitatory synapse numbers on PV interneurons, altered short-term plasticity, and disinhibition of the hippocampal network. In culture, presynaptic Nrg3 increases excitatory synapse numbers on ErbB4(+) interneurons and affects short-term plasticity. Nrg3 mutant neurons are poor donors of presynaptic terminals in the presence of competing neurons that produce recombinant Nrg3, and this bias requires postsynaptic ErbB4 but not ErbB4 kinase activity. Furthermore, when presented by non-neuronal cells, Nrg3 induces postsynaptic membrane specialization. Our data indicate that Nrg3 provides adhesive cues that facilitate excitatory neurons to synapse onto ErbB4(+) interneurons

    Transcript Expression Analysis of Putative Trypanosoma brucei GPI-Anchored Surface Proteins during Development in the Tsetse and Mammalian Hosts

    Get PDF
    Human African Trypanosomiasis is a devastating disease caused by the parasite Trypanosoma brucei. Trypanosomes live extracellularly in both the tsetse fly and the mammal. Trypanosome surface proteins can directly interact with the host environment, allowing parasites to effectively establish and maintain infections. Glycosylphosphatidylinositol (GPI) anchoring is a common posttranslational modification associated with eukaryotic surface proteins. In T. brucei, three GPI-anchored major surface proteins have been identified: variant surface glycoproteins (VSGs), procyclic acidic repetitive protein (PARP or procyclins), and brucei alanine rich proteins (BARP). The objective of this study was to select genes encoding predicted GPI-anchored proteins with unknown function(s) from the T. brucei genome and characterize the expression profile of a subset during cyclical development in the tsetse and mammalian hosts. An initial in silico screen of putative T. brucei proteins by Big PI algorithm identified 163 predicted GPI-anchored proteins, 106 of which had no known functions. Application of a second GPI-anchor prediction algorithm (FragAnchor), signal peptide and trans-membrane domain prediction software resulted in the identification of 25 putative hypothetical proteins. Eighty-one gene products with hypothetical functions were analyzed for stage-regulated expression using semi-quantitative RT-PCR. The expression of most of these genes were found to be upregulated in trypanosomes infecting tsetse salivary gland and proventriculus tissues, and 38% were specifically expressed only by parasites infecting salivary gland tissues. Transcripts for all of the genes specifically expressed in salivary glands were also detected in mammalian infective metacyclic trypomastigotes, suggesting a possible role for these putative proteins in invasion and/or establishment processes in the mammalian host. These results represent the first large-scale report of the differential expression of unknown genes encoding predicted T. brucei surface proteins during the complete developmental cycle. This knowledge may form the foundation for the development of future novel transmission blocking strategies against metacyclic parasites

    Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea : indicators of sub-seafloor hydrothermal processes in back-arc basins

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 74 (2010): 5494-5513, doi:10.1016/j.gca.2010.07.003.Rare earth element (REE) concentrations are reported for a large suite of seafloor vent fluids from four hydrothermal systems in the Manus back–arc basin (Vienna Woods, PACMANUS, DESMOS and SuSu Knolls vent areas). Sampled vent fluids show a wide range of absolute REE concentrations and chondrite–normalized (REEN) distribution patterns (LaN/SmN ~ 0.6 – 11; LaN/YbN ~ 0.6 – 71; EuN/Eu*N ~ 1 – 55). REEN distribution patterns in different vent fluids range from light–REE enriched, to mid– and heavy–REE enriched, to flat, and have a range of positive Eu–anomalies. This heterogeneity contrasts markedly with relatively uniform REEN distribution patterns of mid–ocean ridge hydrothermal fluids. In Manus Basin fluids, aqueous REE compositions do not inherit directly or show a clear relationship with the REE compositions of primary crustal rocks with which hydrothermal fluids interact. These results suggest that the REEs are less sensitive indicators of primary crustal rock composition despite crustal rocks being the dominant source of REEs in submarine hydrothermal fluids. In contrast, differences in aqueous REE compositions are consistently correlated with differences in fluid pH and ligand (chloride, fluoride and sulfate) concentrations. Our results suggest that the REEs can be used as an indicator of the type of magmatic acid volatile (i.e., presence of HF, SO2) degassing in submarine hydrothermal systems. Additional fluid data suggest that near seafloor mixing between high–temperature hydrothermal fluid and locally entrained seawater at many vent areas in the Manus Basin causes anhydrite precipitation. Anhydrite effectively incorporates REE and likely affects measured fluid REE concentrations, but does not affect their relative distributions.This study received financial support from the Ocean Drilling Program Schlanger Fellowship (to P.R. Craddock), the WHOI Deep Ocean Exploration Institute Graduate Fellowship (to E. Reeves) and NSF grant OCE–0327448

    N-Glycans and Glycosylphosphatidylinositol-Anchor Act on Polarized Sorting of Mouse PrPC in Madin-Darby Canine Kidney Cells

    Get PDF
    The cellular prion protein (PrPC) plays a fundamental role in prion disease. PrPC is a glycosylphosphatidylinositol (GPI)-anchored protein with two variably occupied N-glycosylation sites. In general, GPI-anchor and N-glycosylation direct proteins to apical membranes in polarized cells whereas the majority of mouse PrPC is found in basolateral membranes in polarized Madin-Darby canine kidney (MDCK) cells. In this study we have mutated the first, the second, and both N-glycosylation sites of PrPC and also replaced the GPI-anchor of PrPC by the Thy-1 GPI-anchor in order to investigate the role of these signals in sorting of PrPC in MDCK cells. Cell surface biotinylation experiments and confocal microscopy showed that lack of one N-linked oligosaccharide leads to loss of polarized sorting of PrPC. Exchange of the PrPC GPI-anchor for the one of Thy-1 redirects PrPC to the apical membrane. In conclusion, both N-glycosylation and GPI-anchor act on polarized sorting of PrPC, with the GPI-anchor being dominant over N-glycans

    Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease

    Get PDF
    Defining a signature of cortical regions of interest preferentially affected by Alzheimer disease (AD) pathology may offer improved sensitivity to early AD compared to hippocampal volume or mesial temporal lobe alone. Since late-onset Alzheimer disease (LOAD) participants tend to have age-related comorbidities, the younger-onset age in autosomal dominant AD (ADAD) may provide a more idealized model of cortical thinning in AD. To test this, the goals of this study were to compare the degree of overlap between the ADAD and LOAD cortical thinning maps and to evaluate the ability of the ADAD cortical signature regions to predict early pathological changes in cognitively normal individuals. We defined and analyzed the LOAD cortical maps of cortical thickness in 588 participants from the Knight Alzheimer Disease Research Center (Knight ADRC) and the ADAD cortical maps in 269 participants from the Dominantly Inherited Alzheimer Network (DIAN) observational study. Both cohorts were divided into three groups: cognitively normal controls (nADRC = 381; nDIAN = 145), preclinical (nADRC = 153; nDIAN = 76), and cognitively impaired (nADRC = 54; nDIAN = 48). Both cohorts underwent clinical assessments, 3T MRI, and amyloid PET imaging with either 11C-Pittsburgh compound B or 18F-florbetapir. To generate cortical signature maps of cortical thickness, we performed a vertex-wise analysis between the cognitively normal controls and impaired groups within each cohort using six increasingly conservative statistical thresholds to determine significance. The optimal cortical map among the six statistical thresholds was determined from a receiver operating characteristic analysis testing the performance of each map in discriminating between the cognitively normal controls and preclinical groups. We then performed within-cohort and cross-cohort (e.g. ADAD maps evaluated in the Knight ADRC cohort) analyses to examine the sensitivity of the optimal cortical signature maps to the amyloid levels using only the cognitively normal individuals (cognitively normal controls and preclinical groups) in comparison to hippocampal volume. We found the optimal cortical signature maps were sensitive to early increases in amyloid for the asymptomatic individuals within their respective cohorts and were significant beyond the inclusion of hippocampus volume, but the cortical signature maps performed poorly when analyzing across cohorts. These results suggest the cortical signature maps are a useful MRI biomarker of early AD-related neurodegeneration in preclinical individuals and the pattern of decline differs between LOAD and ADAD.Fil: Dincer, Aylin. Washington University in St. Louis; Estados UnidosFil: Gordon, Brian A.. Washington University in St. Louis; Estados UnidosFil: Hari-Raj, Amrita. Ohio State University; Estados UnidosFil: Keefe, Sarah J.. Washington University in St. Louis; Estados UnidosFil: Flores, Shaney. Washington University in St. Louis; Estados UnidosFil: McKay, Nicole S.. Washington University in St. Louis; Estados UnidosFil: Paulick, Angela M.. Washington University in St. Louis; Estados UnidosFil: Shady Lewis, Kristine E.. University of Kentucky; Estados UnidosFil: Feldman, Rebecca L.. Washington University in St. Louis; Estados UnidosFil: Hornbeck, Russ C.. Washington University in St. Louis; Estados UnidosFil: Allegri, Ricardo Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Ances, Beau M.. Washington University in St. Louis; Estados UnidosFil: Berman, Sarah B.. University of Pittsburgh; Estados UnidosFil: Brickman, Adam M.. Columbia University; Estados UnidosFil: Brooks, William S.. Neuroscience Research Australia; Australia. University of New South Wales; AustraliaFil: Cash, David M.. UCL Queen Square Institute of Neurology; Reino UnidoFil: Chhatwal, Jasmeer P.. Harvard Medical School; Estados UnidosFil: Farlow, Martin R.. Indiana University; Estados UnidosFil: Fougère, Christian la. German Center for Neurodegenerative Diseases; Alemania. University Hospital of Tübingen; AlemaniaFil: Fox, Nick C.. UCL Queen Square Institute of Neurology; Reino UnidoFil: Fulham, Michael J.. Royal Prince Alfred Hospital; Australia. University of Sydney; AustraliaFil: Jack, Clifford R.. Mayo Clinic; Estados UnidosFil: Joseph-Mathurin, Nelly. Washington University in St. Louis; Estados UnidosFil: Karch, Celeste M.. Washington University in St. Louis; Estados UnidosFil: Lee, Athene. University Brown; Estados UnidosFil: Levin, Johannes. German Center for Neurodegenerative Diseases; Alemania. Ludwig Maximilians Universitat; Alemania. Munich Cluster for Systems Neurology; AlemaniaFil: Masters, Colin L.. University of Melbourne; AustraliaFil: McDade, Eric M.. Washington University in St. Louis; Estados UnidosFil: Oh, Hwamee. University Brown; Estados UnidosFil: Perrin, Richard J.. Washington University in St. Louis; Estados Unido

    Downregulation of TFPI in breast cancer cells induces tyrosine phosphorylation signaling and increases metastatic growth by stimulating cell motility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased hemostatic activity is common in many cancer types and often causes additional complications and even death. Circumstantial evidence suggests that tissue factor pathway inhibitor-1 (TFPI) plays a role in cancer development. We recently reported that downregulation of TFPI inhibited apoptosis in a breast cancer cell line. In this study, we investigated the effects of TFPI on self-sustained growth and motility of these cells, and of another invasive breast cancer cell type (MDA-MB-231).</p> <p>Methods</p> <p>Stable cell lines with TFPI (both α and β) and only TFPIβ downregulated were created using RNA interference technology. We investigated the ability of the transduced cells to grow, when seeded at low densities, and to form colonies, along with metastatic characteristics such as adhesion, migration and invasion.</p> <p>Results</p> <p>Downregulation of TFPI was associated with increased self-sustained cell growth. An increase in cell attachment and spreading was observed to collagen type I, together with elevated levels of integrin α2. Downregulation of TFPI also stimulated migration and invasion of cells, and elevated MMP activity was involved in the increased invasion observed. Surprisingly, equivalent results were observed when TFPIβ was downregulated, revealing a novel function of this isoform in cancer metastasis.</p> <p>Conclusions</p> <p>Our results suggest an anti-metastatic effect of TFPI and may provide a novel therapeutic approach in cancer.</p
    corecore