1,011 research outputs found

    Conformal Field Theories in Fractional Dimensions

    Get PDF
    We study the conformal bootstrap in fractional space-time dimensions, obtaining rigorous bounds on operator dimensions. Our results show strong evidence that there is a family of unitary CFTs connecting the 2D Ising model, the 3D Ising model, and the free scalar theory in 4D. We give numerical predictions for the leading operator dimensions and central charge in this family at different values of D and compare these to calculations of phi^4 theory in the epsilon-expansion.Comment: 11 pages, 4 figures - references updated - one affiliation modifie

    Massive Gravity Theories and limits of Ghost-free Bigravity models

    Get PDF
    We construct a class of theories which extend New Massive Gravity to higher orders in curvature in any dimension. The lagrangians arise as limits of a new class of bimetric theories of Lovelock gravity, which are unitary theories free from the Boulware-Deser ghost. These Lovelock bigravity models represent the most general non-chiral ghost-free theories of an interacting massless and massive spin-two field in any dimension. The scaling limit is taken in such a way that unitarity is explicitly broken, but the Boulware-Deser ghost remains absent. This automatically implies the existence of a holographic cc-theorem for these theories. We also show that the Born-Infeld extension of New Massive Gravity falls into our class of models demonstrating that this theory is also free of the Boulware-Deser ghost. These results extend existing connections between New Massive Gravity, bigravity theories, Galileon theories and holographic cc-theorems.Comment: 11+5 page

    Solving the 3D Ising Model with the Conformal Bootstrap

    Get PDF
    We study the constraints of crossing symmetry and unitarity in general 3D Conformal Field Theories. In doing so we derive new results for conformal blocks appearing in four-point functions of scalars and present an efficient method for their computation in arbitrary space-time dimension. Comparing the resulting bounds on operator dimensions and OPE coefficients in 3D to known results, we find that the 3D Ising model lies at a corner point on the boundary of the allowed parameter space. We also derive general upper bounds on the dimensions of higher spin operators, relevant in the context of theories with weakly broken higher spin symmetries.Comment: 32 pages, 11 figures; v2: refs added, small changes in Section 5.3, Fig. 7 replaced; v3: ref added, fits redone in Section 5.

    Holography of Charged Dilaton Black Holes

    Get PDF
    We study charged dilaton black branes in AdS4AdS_4. Our system involves a dilaton ϕ\phi coupled to a Maxwell field FμνF_{\mu\nu} with dilaton-dependent gauge coupling, 1g2=f2(ϕ){1\over g^2} = f^2(\phi). First, we find the solutions for extremal and near extremal branes through a combination of analytical and numerical techniques. The near horizon geometries in the simplest cases, where f(ϕ)=eαϕf(\phi) = e^{\alpha\phi}, are Lifshitz-like, with a dynamical exponent zz determined by α\alpha. The black hole thermodynamics varies in an interesting way with α\alpha, but in all cases the entropy is vanishing and the specific heat is positive for the near extremal solutions. We then compute conductivity in these backgrounds. We find that somewhat surprisingly, the AC conductivity vanishes like ω2\omega^2 at T=0 independent of α\alpha. We also explore the charged black brane physics of several other classes of gauge-coupling functions f(ϕ)f(\phi). In addition to possible applications in AdS/CMT, the extremal black branes are of interest from the point of view of the attractor mechanism. The near horizon geometries for these branes are universal, independent of the asymptotic values of the moduli, and describe generic classes of endpoints for attractor flows which are different from AdS2×R2AdS_2\times R^2.Comment: 33 pages, 3 figures, LaTex; v2, references added; v3, more refs added; v4, refs added, minor correction

    Nonlinear Hydrodynamics from Flow of Retarded Green's Function

    Full text link
    We study the radial flow of retarded Green's function of energy-momentum tensor and RR-current of dual gauge theory in presence of generic higher derivative terms in bulk Lagrangian. These are first order non-linear Riccati equations. We solve these flow equations analytically and obtain second order transport coefficients of boundary plasma. This way of computing transport coefficients has an advantage over usual Kubo approach. The non-linear equation turns out to be a linear first order equation when we study the Green's function perturbatively in momentum. We consider several examples including Weyl4Weyl^4 term and generic four derivative terms in bulk. We also study the flow equations for RR-charged black holes and obtain exact expressions for second order transport coefficients for dual plasma in presence of arbitrary chemical potentials. Finally we obtain higher derivative corrections to second order transport coefficients of boundary theory dual to five dimensional gauge supergravity.Comment: Version 2, reference added, typos correcte

    Short-cut to new anomalies in gravity duals to logarithmic conformal field theories

    Full text link
    Various massive gravity theories in three dimensions are conjecturally dual to logarithmic conformal field theories (LCFTs). We summarise the status of these conjectures. LCFTs are characterised by the values of the central charges and the so-called "new anomalies". We employ a short-cut to calculate these new anomalies in generalised massive gravity and in the recently proposed higher-derivative gravity theories with holographic c-theorem. Both cases permit LCFTs exhibiting intriguing features, like rank three Jordan cells or non-zero central charges. Finally, as an example we discuss in some detail the partially massless version of new massive gravity, a theory with several special properties that we call "partially massless gravity".Comment: 34 pages, 2 figures; v2: added references; v3: Several rewordings in the introduction and section 2, added references. Matches published versio

    A genome-wide association study using a DNA pooling strategy identifies BBS9 and GLIS3 as novel loci influencing patient’s outcome after stroke

    Get PDF
    Stroke is a major cause of morbidity in developed countries and therefore finding adequate treatments to promote patient’s recovery is a priority task, requiring the elucidation of the molecular pathways influencing brain recovery. Few studies, however, have assessed the role of genes in stroke outcome. This study describes a pilot genome-wide association study (GWAS) to identify genetic factors contributing to patient’s outcome, using a DNA pooling design. Methods: Patient’s outcome was assessed using the modified Rankin Scale (mRS) three months after stroke. Using the 250K Affymetrix GeneChip Mapping Assay® – Nsp I, we compared SNP allele frequencies in a pool of non-disabled stroke patients (N=87, mRS=0), with a pool of severely disabled or deceased patients (N=100, mRS>=3). The 100 most interesting SNPs were selected for validation by individual genotyping. Results: 36 SNPs were validated, showing significant differences between patients with extremely good and extremely poor outcome at three months (1.7x10-4 ).This work was supported by the grant PTDC/SAU-GMG/64426/2006, Fundação para a Ciência e Tecnologia (FCT). Helena Manso and Tiago Krug were supported by FCT fellowships

    PosterVote:expanding the action repertoire for local political activism

    Get PDF
    Online and digital technologies support and extend the action repertoires of localized social movements. In this paper we examine the ways by which digital technologies can support ‘on-the-ground ’ activist communities in the development of social movements. After identifying some of the challenges of deploying conventional voting and consultation technologies for activism, we examine situated political action in local communities through the design and deployment of a low-cost community voting prototype, PosterVote. We deploy PosterVote in two case studies with two local community organizations identifying the features that supported or hindered grassroots democratic practices. Through interviews with these communities, we explore the design of situated voting systems to support grassroots democratic practices and participation within an ecology of social action. Author Keywords Democracy; activism; participation; e-votin

    AdS_7/CFT_6, Gauss-Bonnet Gravity, and Viscosity Bound

    Get PDF
    We study the relation between the causality and the positivity of energy bounds in Gauss-Bonnet gravity in AdS_7 background and find a precise agreement. Requiring the group velocity of metastable states to be bounded by the speed of light places a bound on the value of Gauss-Bonnet coupling. To find the positivity of energy constraints we compute the parameters which determine the angular distribution of the energy flux in terms of three independent coefficients specifying the three-point function of the stress-energy tensor. We then relate the latter to the Weyl anomaly of the six-dimensional CFT and compute the anomaly holographically. The resulting upper bound on the Gauss-Bonnet coupling coincides with that from causality and results in a new bound on viscosity/entropy ratio.Comment: 21 page, harvmac; v2: reference adde
    corecore