410 research outputs found
NectarCAM : a camera for the medium size telescopes of the Cherenkov Telescope Array
NectarCAM is a camera proposed for the medium-sized telescopes of the
Cherenkov Telescope Array (CTA) covering the central energy range of ~100 GeV
to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the
heart of which is a GHz sampling Switched Capacitor Array and a 12-bit Analog
to Digital converter. The camera will be equipped with 265 7-photomultiplier
modules, covering a field of view of 8 degrees. Each module includes the
photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and
Ethernet transceiver. The recorded events last between a few nanoseconds and
tens of nanoseconds. The camera trigger will be flexible so as to minimize the
read-out dead-time of the NECTAr chips. NectarCAM is designed to sustain a data
rate of more than 4 kHz with less than 5\% dead time. The camera concept, the
design and tests of the various subcomponents and results of thermal and
electrical prototypes are presented. The design includes the mechanical
structure, cooling of the electronics, read-out, clock distribution, slow
control, data-acquisition, triggering, monitoring and services.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter
We present a study of showers initiated by electrons, pions, kaons, and
protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE
scintillator-tungsten analogue hadronic calorimeter. The data were recorded at
the CERN Super Proton Synchrotron in 2011. The analysis includes measurements
of the calorimeter response to each particle type as well as measurements of
the energy resolution and studies of the longitudinal and radial shower
development for selected particles. The results are compared to Geant4
simulations (version 9.6.p02). In the study of the energy resolution we include
previously published data with beam momenta from 1 GeV to 10 GeV recorded at
the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table
Automated SNP detection from a large collection of white spruce expressed sequences: contributing factors and approaches for the categorization of SNPs
BACKGROUND: High-throughput genotyping technologies represent a highly efficient way to accelerate genetic mapping and enable association studies. As a first step toward this goal, we aimed to develop a resource of candidate Single Nucleotide Polymorphisms (SNP) in white spruce (Picea glauca [Moench] Voss), a softwood tree of major economic importance. RESULTS: A white spruce SNP resource encompassing 12,264 SNPs was constructed from a set of 6,459 contigs derived from Expressed Sequence Tags (EST) and by using the bayesian-based statistical software PolyBayes. Several parameters influencing the SNP prediction were analysed including the a priori expected polymorphism, the probability score (P(SNP)), and the contig depth and length. SNP detection in 3' and 5' reads from the same clones revealed a level of inconsistency between overlapping sequences as low as 1%. A subset of 245 predicted SNPs were verified through the independent resequencing of genomic DNA of a genotype also used to prepare cDNA libraries. The validation rate reached a maximum of 85% for SNPs predicted with either P(SNP )≥ 0.95 or ≥ 0.99. A total of 9,310 SNPs were detected by using P(SNP )≥ 0.95 as a criterion. The SNPs were distributed among 3,590 contigs encompassing an array of broad functional categories, with an overall frequency of 1 SNP per 700 nucleotide sites. Experimental and statistical approaches were used to evaluate the proportion of paralogous SNPs, with estimates in the range of 8 to 12%. The 3,789 coding SNPs identified through coding region annotation and ORF prediction, were distributed into 39% nonsynonymous and 61% synonymous substitutions. Overall, there were 0.9 SNP per 1,000 nonsynonymous sites and 5.2 SNPs per 1,000 synonymous sites, for a genome-wide nonsynonymous to synonymous substitution rate ratio (Ka/Ks) of 0.17. CONCLUSION: We integrated the SNP data in the ForestTreeDB database along with functional annotations to provide a tool facilitating the choice of candidate genes for mapping purposes or association studies
Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies
UMR-AGAP Equipe DAVV (Diversité, adaptation et amélioration de la vigne) ; équipe ID (Intégration de Données)International audienceAbstractBackgroundAs for many crops, new high-quality grapevine varieties requiring less pesticide and adapted to climate change are needed. In perennial species, breeding is a long process which can be speeded up by gaining knowledge about quantitative trait loci linked to agronomic traits variation. However, due to the long juvenile period of these species, establishing numerous highly recombinant populations for high resolution mapping is both costly and time-consuming. Genome wide association studies in germplasm panels is an alternative method of choice, since it allows identifying the main quantitative trait loci with high resolution by exploiting past recombination events between cultivars. Such studies require adequate panel design to represent most of the available genetic and phenotypic diversity. Assessing linkage disequilibrium extent and panel power is also needed to determine the marker density required for association studies.ResultsStarting from the largest grapevine collection worldwide maintained in Vassal (France), we designed a diversity panel of 279 cultivars with limited relatedness, reflecting the low structuration in three genetic pools resulting from different uses (table vs wine) and geographical origin (East vs West), and including the major founders of modern cultivars. With 20 simple sequence repeat markers and five quantitative traits, we showed that our panel adequately captured most of the genetic and phenotypic diversity existing within the entire Vassal collection. To assess linkage disequilibrium extent and panel power, we genotyped single nucleotide polymorphisms: 372 over four genomic regions and 129 distributed over the whole genome. Linkage disequilibrium, measured by correlation corrected for kinship, reached 0.2 for a physical distance between 9 and 458 Kb depending on genetic pool and genomic region, with varying size of linkage disequilibrium blocks. This panel achieved reasonable power to detect associations between traits with high broad-sense heritability (> 0.7) and causal loci with intermediate allelic frequency and strong effect (explaining > 10 % of total variance).ConclusionsOur association panel constitutes a new, highly valuable resource for genetic association studies in grapevine, and deserves dissemination to diverse field and greenhouse trials to gain more insight into the genetic control of many agronomic traits and their interaction with the environment
Spatial navigation deficits — overlooked cognitive marker for preclinical Alzheimer disease?
Detection of incipient Alzheimer disease (AD) pathophysiology is critical to identify preclinical individuals and target potentially disease-modifying therapies towards them. Current neuroimaging and biomarker research is strongly focused in this direction, with the aim of establishing AD fingerprints to identify individuals at high risk of developing this disease. By contrast, cognitive fingerprints for incipient AD are virtually non-existent as diagnostics and outcomes measures are still focused on episodic memory deficits as the gold standard for AD, despite their low sensitivity and specificity for identifying at-risk individuals. This Review highlights a novel feature of cognitive evaluation for incipient AD by focusing on spatial navigation and orientation deficits, which are increasingly shown to be present in at-risk individuals. Importantly, the navigation system in the brain overlaps substantially with the regions affected by AD in both animal models and humans. Notably, spatial navigation has fewer verbal, cultural and educational biases than current cognitive tests and could enable a more uniform, global approach towards cognitive fingerprints of AD and better cognitive treatment outcome measures in future multicentre trials. The current Review appraises the available evidence for spatial navigation and/or orientation deficits in preclinical, prodromal and confirmed AD and identifies research gaps and future research priorities
Frequency and characteristics of disease flares in ankylosing spondylitis
Objective. To examine the characteristics and frequency of disease flares in a cohort of people with AS
Broad white matter impairment in multiple system atrophy.
Multiple system atrophy (MSA) is a rare neurodegenerative disorder characterized by the widespread aberrant accumulation of α-synuclein (α-syn). MSA differs from other synucleinopathies such as Parkinson's disease (PD) in that α-syn accumulates primarily in oligodendrocytes, the only source of white matter myelination in the brain. Previous MSA imaging studies have uncovered focal differences in white matter. Here, we sought to build on this work by taking a global perspective on whole brain white matter. In order to do this, in vivo structural imaging and diffusion magnetic resonance imaging were acquired on 26 MSA patients, 26 healthy controls, and 23 PD patients. A refined whole brain approach encompassing the major fiber tracts and the superficial white matter located at the boundary of the cortical mantle was applied. The primary observation was that MSA but not PD patients had whole brain deep and superficial white matter diffusivity abnormalities (p < .001). In addition, in MSA patients, these abnormalities were associated with motor (Unified MSA Rating Scale, Part II) and cognitive functions (Mini-Mental State Examination). The pervasive whole brain abnormalities we observe suggest that there is widespread white matter damage in MSA patients which mirrors the widespread aggregation of α-syn in oligodendrocytes. Importantly, whole brain white matter abnormalities were associated with clinical symptoms, suggesting that white matter impairment may be more central to MSA than previously thought
Novel image–novel location object recognition task sensitive to age-related cognitive decline in nondemented elderly
Traditional tests used in the clinic to identify dementia, such as the mini-mental state examination (MMSE), are useful to identify severe cognitive impairments but might be less sensitive to detect more subtle age-related cognitive changes. Previously, the novel image–novel location (NINL) object recognition test was shown to be sensitive to detect effects of apolipoprotein E4, a risk factor for developing age-related cognitive decline and Alzheimer’s disease, in nondemented elderly. In the present longitudinal study, performance on the MMSE and the NINL tests were compared over a 4-year period. Individual NINL scores over this period were highly correlated. In addition, while MMSE scores did not change over the 4-year period, NINL scores did. In a final testing session of a subset of the participants, NINL scores correlated with logical memory and word recall lists, cognitive tasks used to detect dementia in the clinic, as well as clinical dementia rating scales. These results support that the NINL might be a valuable tool to assess age-related cognitive decline
Longitudinal Numbers-Needed-To-Treat (NNT) for Achieving Various Levels of Analgesic Response and Improvement with Etoricoxib, Naproxen, and Placebo in Ankylosing Spondylitis
<p>Abstract</p> <p>Background</p> <p>Clinical analgesic trials typically report response as group mean results. However, research has shown that few patients are average and most have responses at the extremes. Moreover, group mean results do not convey response levels and thus have limited value in representing the benefit-risk at an individual level. Responder analyses and numbers-needed-to-treat (NNT) are considered more relevant for evaluating treatment response. We evaluated levels of analgesic response and Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) score improvement and the associated NNTs.</p> <p>Methods</p> <p>This was a post-hoc analysis of a 6-week, randomized, double-blind study (N = 387) comparing etoricoxib 90 mg, etoricoxib 120 mg, naproxen 1000 mg, and placebo in AS. Spine pain and BASDAI were measured on a 100-mm visual analog scale. The number and percentage of patients achieving ≥30% and ≥50% improvement in both BASDAI and spine pain were calculated and used to determine the corresponding NNTs. Patients who discontinued from the study for any reason were assigned zero improvement beyond 7 days of the time of discontinuation.</p> <p>Results</p> <p>For etoricoxib 90 mg, etoricoxib 120 mg and naproxen 1000 mg, the NNTs at 6 weeks compared with placebo were 2.0, 2.0, and 2.7 respectively for BASDAI ≥30% improvement, and 3.2, 2.8, and 4.1 for ≥50% improvement. For spine pain, the NNTs were 1.9, 2.0, and 3.2, respectively, for ≥30% improvement, and 2.7, 2.5, and 3.7 for ≥50% improvement. The differences between etoricoxib and naproxen exceeded the limit of ±0.5 units described as a clinically meaningful difference for pain. Response rates and NNTs were generally similar and stable over 2, 4, and 6 weeks.</p> <p>Conclusions</p> <p>For every 2 patients treated with etoricoxib, 1 achieved a clinically meaningful (≥30%) improvement in spine pain and BASDAI beyond that expected from placebo, whereas the corresponding values were approximately 1 in every 3 patients treated with naproxen. Use of NNTs and responder analyses provide additional, complementary information beyond population mean responses when assessing efficacy compared to placebo and amongst active therapies.</p
- …
