2,460 research outputs found

    Ultracold collisions in tight harmonic traps: Quantum defect model and application to metastable helium atoms

    Full text link
    We analyze a system of two colliding ultracold atoms under strong harmonic confinement from the viewpoint of quantum defect theory and formulate a generalized self-consistent method for determining the allowed energies. We also present two highly efficient computational methods for determining the bound state energies and eigenfunctions of such systems. The perturbed harmonic oscillator problem is characterized by a long asymptotic region beyond the effective range of the interatomic potential. The first method, which is based on quantum defect theory and is an adaptation of a technique developed by one of the authors (GP) for highly excited states in a modified Coulomb potential, is very efficient for integrating through this outer region. The second method is a direct numerical solution of the radial Schr\"{o}dinger equation using a discrete variable representation of the kinetic energy operator and a scaled radial coordinate grid. The methods are applied to the case of trapped spin-polarized metastable helium atoms. The calculated eigenvalues agree very closely for the two methods, and with those computed self-consistently using the generalized self-consistent method.Comment: 11 pages,REVTEX, text substantially revised, title modifie

    An FFAG Transport Line for the PAMELA Project

    Get PDF
    The PAMELA project to design an accelerator for hadron therapy using non-scaling Fixed Field Alternating Gradient (NS-FFAG) magnets requires a transport line and gantry to take the beam to the patient. The NS-FFAG principle offers the possibility of a gantry much smaller, lighter and cheaper than conventional designs, with the added ability to accept a wide range of fast changing energies. This paper will build on previous work to investigate a transport line which could be used for the PAMELA project. The design is presented along with a study and optimisation of its acceptance

    Relativistic fine structure oscillator strengths for Li-like ions: C IV - Si XII, S XIV, Ar XVI, Ca XVIII, Ti XX, Cr XXII, and Ni XXVI

    Get PDF
    Ab initio calculations including relativistic effects employing the Breit-Pauli R-matrix (BPRM) method are reported for fine structure energy levels and oscillator strengths upto n = 10 and 0.leq. l .leq.9 for 15 Li-like ions: C IV, N V, O VI, F VII, Ne VIII, Na IX, Mg X, Al XI, Si XII, S XIV, Ar XVI, Ca XIII, Ti XX, Cr XXII, and Ni XXVI. About one hundred bound fine structure energy levels of total angular momenta, 1/2 .leq. J .leq. 17/2 of even and odd parities, total orbital angular momentum, 0 .leq L .leq. 9 and spin multiplicity (2S+1) = 2, 4 are considered for each ion. The levels provide almost 900 dipole allowed and intercombination bound-bound transitions. The BPRM method enables consideration of large set of transitions with uniform accuracy compared to the best available theoretical methods. The CC eigenfunction expansion for each ion includes the lowest 17 fine structure energy levels of the core configurations 1s^2, 1s2s, 1s2p, 1s3s, 1s3p, and 1s3d. The calculated energies of the ions agree with the measured values to within 1% for most levels. The transition probabilities show good agreement with the best available calculated values. The results provide the largest sets of energy levels and transition rates for the ions and are expected to be useful in the analysis of X-ray and EUV spectra from astrophysical sources.Comment: 16 pgs., to appear in Astronomy and Astrophysic

    Pamela: development of the RF system for a non-relativistic non-scaling FFAG

    Get PDF
    The PAMELA project(Particle Accelerator For MEdical Applications) currently consists of the design of a particle therapy facility. The project, which is in the design phase, contains Non-Scaling FFAG, particle accelerator capable of rapid beam acceleration, giving a pulse repetition rate of 1kHz, far beyond that of a conventional synchrotron. To realise the repetition rate, a key component of the accelerator is the rf accelerating system. The combination of a high energy gain per turn and a high repetition rate is a significant challenge. In this paper, options for the rf system of the proton ring and the status of development are presented

    Flight tests of IFR landing approach systems for helicopters

    Get PDF
    Joint NASA/FAA helicopter flight tests were conducted to investigate airborne radar approaches (ARA) and microwave landing system (MLS) approaches. Flight-test results were utilized to prove NASA with a data base to be used as a performance measure for advanced guidance and navigation concepts, and to provide FAA with data for establishment of TERPS criteria. The first flight-test investigation consisted of helicopter IFR approaches to offshore oil rigs in the Gulf of Mexico, using weather/mapping radar, operational pilots, and a Bell 212 helicopter. The second flight-test investigation consisted of IFR MLS approaches at Crows Landing (near Ames Research Center), with a Bell UH-1H helicopter, using NASA, FAA, and operational industry pilots. Tests are described and results discussed

    Quantum-mechanical calculation of Stark widths of Ne VII n=3, Δn=0\Delta n=0 transitions

    Full text link
    The Stark widths of the Ne VII 2s3s-2s3p singlet and triplet lines are calculated in the impact approximation using quantum-mechanical Convergent Close-Coupling and Coulomb-Born-Exchange approximations. It is shown that the contribution from inelastic collisions to the line widths exceeds the elastic width contribution by about an order of magnitude. Comparison with the line widths measured in a hot dense plasma of a gas-liner pinch indicates a significant difference which may be naturally explained by non-thermal Doppler effects from persistent implosion velocities or turbulence developed during the pinch implosion. Contributions to the line width from different partial waves and types of interactions are discussed as well.Comment: 8 pages, 3 figures; accepted by Phys. Rev.

    Seagrass can mitigate negative ocean acidification effects on calcifying algae

    Get PDF
    The ultimate effect that ocean acidification (OA) and warming will have on the physiology of calcifying algae is still largely uncertain. Responses depend on the complex interactions between seawater chemistry, global/local stressors and species-specific physiologies. There is a significant gap regarding the effect that metabolic interactions between coexisting species may have on local seawater chemistry and the concurrent effect of OA. Here, we manipulated CO2 and temperature to evaluate the physiological responses of two common photoautotrophs from shallow tropical marine coastal ecosystems in Brazil: the calcifying alga Halimeda cuneata, and the seagrass Halodule wrightii. We tested whether or not seagrass presence can influence the calcification rate of a widespread and abundant species of Halimeda under OA and warming. Our results demonstrate that under elevated CO2, the high photosynthetic rates of H. wrightii contribute to raise H. cuneata calcification more than two-fold and thus we suggest that H. cuneata populations coexisting with H. wrightii may have a higher resilience to OA conditions. This conclusion supports the more general hypothesis that, in coastal and shallow reef environments, the metabolic interactions between calcifying and non-calcifying organisms are instrumental in providing refuge against OA effects and increasing the resilience of the more OA-susceptible species.E.B. would like to thank the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES) for Masters funding. Funding for this project came from the Synergism grant (CNPq 407365/2013-3). We extend our thanks to the Brazil-based Projeto Coral Vivo and its sponsor PetroBras Ambiental for providing the Marine Mesocosm structure and experimental assistance.info:eu-repo/semantics/publishedVersio

    Charge Exchange Processes between Excited Helium and Fully Stripped Ions

    Get PDF
    We made a classical trajectory Monte Carlo (CTMC) calculation of state selective cross sections for processes between some light ions and excited helium. The results, useful for analysis of spectroscopic data of fusion devices, are in good agreement with theoretical predictions of scaling laws.Comment: LaTex, 8 pages, 4 figures (available on request to the authors), DFPD/94/TH/57, to be published in Phys. Rev.
    corecore