935 research outputs found

    New Results for the Correlation Functions of the Ising Model and the Transverse Ising Chain

    Full text link
    In this paper we show how an infinite system of coupled Toda-type nonlinear differential equations derived by one of us can be used efficiently to calculate the time-dependent pair-correlations in the Ising chain in a transverse field. The results are seen to match extremely well long large-time asymptotic expansions newly derived here. For our initial conditions we use new long asymptotic expansions for the equal-time pair correlation functions of the transverse Ising chain, extending an old result of T.T. Wu for the 2d Ising model. Using this one can also study the equal-time wavevector-dependent correlation function of the quantum chain, a.k.a. the q-dependent diagonal susceptibility in the 2d Ising model, in great detail with very little computational effort.Comment: LaTeX 2e, 31 pages, 8 figures (16 eps files). vs2: Two references added and minor changes of style. vs3: Corrections made and reference adde

    Finite temperature correlations in the one-dimensional quantum Ising model

    Full text link
    We extend the form-factors approach to the quantum Ising model at finite temperature. The two point function of the energy is obtained in closed form, while the two point function of the spin is written as a Fredholm determinant. Using the approach of \Korbook, we obtain, starting directly from the continuum formulation, a set of six differential equations satisfied by this two point function. Four of these equations involve only spacetime derivatives, of which three are equivalent to the equations obtained earlier in \mccoy,\perk. In addition, we obtain two new equations involving a temperature derivative. Some of these results are generalized to the Ising model on the half line with a magnetic field at the origin.Comment: 37 pages, uses harvmac, minor changes in the last two paragraphs, updating some conjecture

    Quantum Loop Subalgebra and Eigenvectors of the Superintegrable Chiral Potts Transfer Matrices

    Full text link
    It has been shown in earlier works that for Q=0 and L a multiple of N, the ground state sector eigenspace of the superintegrable tau_2(t_q) model is highly degenerate and is generated by a quantum loop algebra L(sl_2). Furthermore, this loop algebra can be decomposed into r=(N-1)L/N simple sl_2 algebras. For Q not equal 0, we shall show here that the corresponding eigenspace of tau_2(t_q) is still highly degenerate, but splits into two spaces, each containing 2^{r-1} independent eigenvectors. The generators for the sl_2 subalgebras, and also for the quantum loop subalgebra, are given generalizing those in the Q=0 case. However, the Serre relations for the generators of the loop subalgebra are only proven for some states, tested on small systems and conjectured otherwise. Assuming their validity we construct the eigenvectors of the Q not equal 0 ground state sectors for the transfer matrix of the superintegrable chiral Potts model.Comment: LaTeX 2E document, using iopart.cls with iopams packages. 28 pages, uses eufb10 and eurm10 fonts. Typeset twice! Version 2: Details added, improvements and minor corrections made, erratum to paper 2 included. Version 3: Small paragraph added in introductio

    The Onsager Algebra Symmetry of τ(j)\tau^{(j)}-matrices in the Superintegrable Chiral Potts Model

    Full text link
    We demonstrate that the τ(j)\tau^{(j)}-matrices in the superintegrable chiral Potts model possess the Onsager algebra symmetry for their degenerate eigenvalues. The Fabricius-McCoy comparison of functional relations of the eight-vertex model for roots of unity and the superintegrable chiral Potts model has been carefully analyzed by identifying equivalent terms in the corresponding equations, by which we extract the conjectured relation of QQ-operators and all fusion matrices in the eight-vertex model corresponding to the TT^T\hat{T}-relation in the chiral Potts model.Comment: Latex 21 pages; Typos added, References update

    Dynamic properties of the spin-1/2 XY chain with three-site interactions

    Full text link
    We consider a spin-1/2 XY chain in a transverse (z) field with multi-site interactions. The additional terms introduced into the Hamiltonian involve products of spin components related to three adjacent sites. A Jordan-Wigner transformation leads to a simple bilinear Fermi form for the resulting Hamiltonian and hence the spin model admits a rigorous analysis. We point out the close relationships between several variants of the model which were discussed separately in previous studies. The ground-state phases (ferromagnet and two kinds of spin liquid) of the model are reflected in the dynamic structure factors of the spin chains, which are the main focus in this study. First we consider the zz dynamic structure factor reporting for this quantity a closed-form expression and analyzing the properties of the two-fermion (particle-hole) excitation continuum which governs the dynamics of transverse spin component fluctuations and of some other local operator fluctuations. Then we examine the xx dynamic structure factor which is governed by many-fermion excitations, reporting both analytical and numerical results. We discuss some easily recognized features of the dynamic structure factors which are signatures for the presence of the three-site interactions.Comment: 28 pages, 10 fugure

    Unsigned state models for the Jones polynomial

    Full text link
    It is well a known and fundamental result that the Jones polynomial can be expressed as Potts and vertex partition functions of signed plane graphs. Here we consider constructions of the Jones polynomial as state models of unsigned graphs and show that the Jones polynomial of any link can be expressed as a vertex model of an unsigned embedded graph. In the process of deriving this result, we show that for every diagram of a link in the 3-sphere there exists a diagram of an alternating link in a thickened surface (and an alternating virtual link) with the same Kauffman bracket. We also recover two recent results in the literature relating the Jones and Bollobas-Riordan polynomials and show they arise from two different interpretations of the same embedded graph.Comment: Minor corrections. To appear in Annals of Combinatoric

    Duality and Symmetry in Chiral Potts Model

    Full text link
    We discover an Ising-type duality in the general NN-state chiral Potts model, which is the Kramers-Wannier duality of planar Ising model when N=2. This duality relates the spectrum and eigenvectors of one chiral Potts model at a low temperature (of small kk') to those of another chiral Potts model at a high temperature (of k1k'^{-1}). The τ(2)\tau^{(2)}-model and chiral Potts model on the dual lattice are established alongside the dual chiral Potts models. With the aid of this duality relation, we exact a precise relationship between the Onsager-algebra symmetry of a homogeneous superintegrable chiral Potts model and the sl2sl_2-loop-algebra symmetry of its associated spin-N12\frac{N-1}{2} XXZ chain through the identification of their eigenstates.Comment: Latex 34 pages, 2 figures; Typos and misprints in Journal version are corrected with minor changes in expression of some formula

    Low temperature relaxational dynamics of the Ising chain in a transverse field

    Full text link
    We present asymptotically exact results for the real time order parameter correlations of a class of d=1 Ising models in a transverse field at low temperatures (T) on both sides of the quantum critical point. The correlations are a product of a T-independent factor determined by quantum effects, and a T-dependent relaxation function which comes from a classical theory. We confirm our predictions by a no-free-parameter comparison with numerical studies on the nearest neighbor spin-1/2 model.Comment: Final version to be published in Physical Review Letters. The postscript file is also available by anonymous ftp at ftp://chopin.ucsc.edu/pub/dynamics.ps.g

    Dynamics and transport near quantum-critical points

    Full text link
    The physics of non-zero temperature dynamics and transport near quantum-critical points is discussed by a detailed study of the O(N)-symmetric, relativistic, quantum field theory of a N-component scalar field in dd spatial dimensions. A great deal of insight is gained from a simple, exact solution of the long-time dynamics for the N=1 d=1 case: this model describes the critical point of the Ising chain in a transverse field, and the dynamics in all the distinct, limiting, physical regions of its finite temperature phase diagram is obtained. The N=3, d=1 model describes insulating, gapped, spin chain compounds: the exact, low temperature value of the spin diffusivity is computed, and compared with NMR experiments. The N=3, d=2,3 models describe Heisenberg antiferromagnets with collinear N\'{e}el correlations, and experimental realizations of quantum-critical behavior in these systems are discussed. Finally, the N=2, d=2 model describes the superfluid-insulator transition in lattice boson systems: the frequency and temperature dependence of the the conductivity at the quantum-critical coupling is described and implications for experiments in two-dimensional thin films and inversion layers are noted.Comment: Lectures presented at the NATO Advanced Study Institute on "Dynamical properties of unconventional magnetic systems", Geilo, Norway, April 2-12, 1997, edited by A. Skjeltorp and D. Sherrington, Kluwer Academic, to be published. 46 page
    corecore