935 research outputs found
New Results for the Correlation Functions of the Ising Model and the Transverse Ising Chain
In this paper we show how an infinite system of coupled Toda-type nonlinear
differential equations derived by one of us can be used efficiently to
calculate the time-dependent pair-correlations in the Ising chain in a
transverse field. The results are seen to match extremely well long large-time
asymptotic expansions newly derived here. For our initial conditions we use new
long asymptotic expansions for the equal-time pair correlation functions of the
transverse Ising chain, extending an old result of T.T. Wu for the 2d Ising
model. Using this one can also study the equal-time wavevector-dependent
correlation function of the quantum chain, a.k.a. the q-dependent diagonal
susceptibility in the 2d Ising model, in great detail with very little
computational effort.Comment: LaTeX 2e, 31 pages, 8 figures (16 eps files). vs2: Two references
added and minor changes of style. vs3: Corrections made and reference adde
Finite temperature correlations in the one-dimensional quantum Ising model
We extend the form-factors approach to the quantum Ising model at finite
temperature. The two point function of the energy is obtained in closed form,
while the two point function of the spin is written as a Fredholm determinant.
Using the approach of \Korbook, we obtain, starting directly from the continuum
formulation, a set of six differential equations satisfied by this two point
function. Four of these equations involve only spacetime derivatives, of which
three are equivalent to the equations obtained earlier in \mccoy,\perk. In
addition, we obtain two new equations involving a temperature derivative. Some
of these results are generalized to the Ising model on the half line with a
magnetic field at the origin.Comment: 37 pages, uses harvmac, minor changes in the last two paragraphs,
updating some conjecture
Quantum Loop Subalgebra and Eigenvectors of the Superintegrable Chiral Potts Transfer Matrices
It has been shown in earlier works that for Q=0 and L a multiple of N, the
ground state sector eigenspace of the superintegrable tau_2(t_q) model is
highly degenerate and is generated by a quantum loop algebra L(sl_2).
Furthermore, this loop algebra can be decomposed into r=(N-1)L/N simple sl_2
algebras. For Q not equal 0, we shall show here that the corresponding
eigenspace of tau_2(t_q) is still highly degenerate, but splits into two
spaces, each containing 2^{r-1} independent eigenvectors. The generators for
the sl_2 subalgebras, and also for the quantum loop subalgebra, are given
generalizing those in the Q=0 case. However, the Serre relations for the
generators of the loop subalgebra are only proven for some states, tested on
small systems and conjectured otherwise. Assuming their validity we construct
the eigenvectors of the Q not equal 0 ground state sectors for the transfer
matrix of the superintegrable chiral Potts model.Comment: LaTeX 2E document, using iopart.cls with iopams packages. 28 pages,
uses eufb10 and eurm10 fonts. Typeset twice! Version 2: Details added,
improvements and minor corrections made, erratum to paper 2 included. Version
3: Small paragraph added in introductio
The Onsager Algebra Symmetry of -matrices in the Superintegrable Chiral Potts Model
We demonstrate that the -matrices in the superintegrable chiral
Potts model possess the Onsager algebra symmetry for their degenerate
eigenvalues. The Fabricius-McCoy comparison of functional relations of the
eight-vertex model for roots of unity and the superintegrable chiral Potts
model has been carefully analyzed by identifying equivalent terms in the
corresponding equations, by which we extract the conjectured relation of
-operators and all fusion matrices in the eight-vertex model corresponding
to the -relation in the chiral Potts model.Comment: Latex 21 pages; Typos added, References update
Dynamic properties of the spin-1/2 XY chain with three-site interactions
We consider a spin-1/2 XY chain in a transverse (z) field with multi-site
interactions. The additional terms introduced into the Hamiltonian involve
products of spin components related to three adjacent sites. A Jordan-Wigner
transformation leads to a simple bilinear Fermi form for the resulting
Hamiltonian and hence the spin model admits a rigorous analysis. We point out
the close relationships between several variants of the model which were
discussed separately in previous studies. The ground-state phases (ferromagnet
and two kinds of spin liquid) of the model are reflected in the dynamic
structure factors of the spin chains, which are the main focus in this study.
First we consider the zz dynamic structure factor reporting for this quantity a
closed-form expression and analyzing the properties of the two-fermion
(particle-hole) excitation continuum which governs the dynamics of transverse
spin component fluctuations and of some other local operator fluctuations. Then
we examine the xx dynamic structure factor which is governed by many-fermion
excitations, reporting both analytical and numerical results. We discuss some
easily recognized features of the dynamic structure factors which are
signatures for the presence of the three-site interactions.Comment: 28 pages, 10 fugure
Unsigned state models for the Jones polynomial
It is well a known and fundamental result that the Jones polynomial can be
expressed as Potts and vertex partition functions of signed plane graphs. Here
we consider constructions of the Jones polynomial as state models of unsigned
graphs and show that the Jones polynomial of any link can be expressed as a
vertex model of an unsigned embedded graph.
In the process of deriving this result, we show that for every diagram of a
link in the 3-sphere there exists a diagram of an alternating link in a
thickened surface (and an alternating virtual link) with the same Kauffman
bracket. We also recover two recent results in the literature relating the
Jones and Bollobas-Riordan polynomials and show they arise from two different
interpretations of the same embedded graph.Comment: Minor corrections. To appear in Annals of Combinatoric
Duality and Symmetry in Chiral Potts Model
We discover an Ising-type duality in the general -state chiral Potts
model, which is the Kramers-Wannier duality of planar Ising model when N=2.
This duality relates the spectrum and eigenvectors of one chiral Potts model at
a low temperature (of small ) to those of another chiral Potts model at a
high temperature (of ). The -model and chiral Potts model
on the dual lattice are established alongside the dual chiral Potts models.
With the aid of this duality relation, we exact a precise relationship between
the Onsager-algebra symmetry of a homogeneous superintegrable chiral Potts
model and the -loop-algebra symmetry of its associated
spin- XXZ chain through the identification of their eigenstates.Comment: Latex 34 pages, 2 figures; Typos and misprints in Journal version are
corrected with minor changes in expression of some formula
Low temperature relaxational dynamics of the Ising chain in a transverse field
We present asymptotically exact results for the real time order parameter
correlations of a class of d=1 Ising models in a transverse field at low
temperatures (T) on both sides of the quantum critical point. The correlations
are a product of a T-independent factor determined by quantum effects, and a
T-dependent relaxation function which comes from a classical theory. We confirm
our predictions by a no-free-parameter comparison with numerical studies on the
nearest neighbor spin-1/2 model.Comment: Final version to be published in Physical Review Letters. The
postscript file is also available by anonymous ftp at
ftp://chopin.ucsc.edu/pub/dynamics.ps.g
Dynamics and transport near quantum-critical points
The physics of non-zero temperature dynamics and transport near
quantum-critical points is discussed by a detailed study of the O(N)-symmetric,
relativistic, quantum field theory of a N-component scalar field in spatial
dimensions. A great deal of insight is gained from a simple, exact solution of
the long-time dynamics for the N=1 d=1 case: this model describes the critical
point of the Ising chain in a transverse field, and the dynamics in all the
distinct, limiting, physical regions of its finite temperature phase diagram is
obtained. The N=3, d=1 model describes insulating, gapped, spin chain
compounds: the exact, low temperature value of the spin diffusivity is
computed, and compared with NMR experiments. The N=3, d=2,3 models describe
Heisenberg antiferromagnets with collinear N\'{e}el correlations, and
experimental realizations of quantum-critical behavior in these systems are
discussed. Finally, the N=2, d=2 model describes the superfluid-insulator
transition in lattice boson systems: the frequency and temperature dependence
of the the conductivity at the quantum-critical coupling is described and
implications for experiments in two-dimensional thin films and inversion layers
are noted.Comment: Lectures presented at the NATO Advanced Study Institute on "Dynamical
properties of unconventional magnetic systems", Geilo, Norway, April 2-12,
1997, edited by A. Skjeltorp and D. Sherrington, Kluwer Academic, to be
published. 46 page
- …
