8,323 research outputs found
Simulation of UHE muons propagation for GEANT3
A simulation package for the transport of high energy muons has been
developed. It has been conceived to replace the muon propagation software
modules implemented in the detector simulation program GEANT3. Here we discuss
the results achieved with our package and we check the agreement with numerical
calculations up to 10**8 GeV.Comment: 21 pages, 6 figures, 1 Table. AMSTeX document, acknowledgments adde
Linear Theory of Electron-Plasma Waves at Arbitrary Collisionality
The dynamics of electron-plasma waves are described at arbitrary
collisionality by considering the full Coulomb collision operator. The
description is based on a Hermite-Laguerre decomposition of the velocity
dependence of the electron distribution function. The damping rate, frequency,
and eigenmode spectrum of electron-plasma waves are found as functions of the
collision frequency and wavelength. A comparison is made between the
collisionless Landau damping limit, the Lenard-Bernstein and Dougherty
collision operators, and the electron-ion collision operator, finding large
deviations in the damping rates and eigenmode spectra. A purely damped entropy
mode, characteristic of a plasma where pitch-angle scattering effects are
dominant with respect to collisionless effects, is shown to emerge numerically,
and its dispersion relation is analytically derived. It is shown that such a
mode is absent when simplified collision operators are used, and that
like-particle collisions strongly influence the damping rate of the entropy
mode.Comment: 23 pages, 10 figures, accepted for publication on Journal of Plasma
Physic
A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks
An explosion of high-throughput DNA sequencing in the past decade has led to
a surge of interest in population-scale inference with whole-genome data.
Recent work in population genetics has centered on designing inference methods
for relatively simple model classes, and few scalable general-purpose inference
techniques exist for more realistic, complex models. To achieve this, two
inferential challenges need to be addressed: (1) population data are
exchangeable, calling for methods that efficiently exploit the symmetries of
the data, and (2) computing likelihoods is intractable as it requires
integrating over a set of correlated, extremely high-dimensional latent
variables. These challenges are traditionally tackled by likelihood-free
methods that use scientific simulators to generate datasets and reduce them to
hand-designed, permutation-invariant summary statistics, often leading to
inaccurate inference. In this work, we develop an exchangeable neural network
that performs summary statistic-free, likelihood-free inference. Our framework
can be applied in a black-box fashion across a variety of simulation-based
tasks, both within and outside biology. We demonstrate the power of our
approach on the recombination hotspot testing problem, outperforming the
state-of-the-art.Comment: 9 pages, 8 figure
Conserved presence of G-quadruplex forming sequences in the Long Terminal Repeat Promoter of Lentiviruses
G-quadruplexes (G4s) are secondary structures of nucleic acids that epigenetically regulate cellular processes. In the human immunodeficiency lentivirus 1 (HIV-1), dynamic G4s are located in the unique viral LTR promoter. Folding of HIV-1 LTR G4s inhibits viral transcription; stabilization by G4 ligands intensifies this effect. Cellular proteins modulate viral transcription by inducing/unfolding LTR G4s. We here expanded our investigation on the presence of LTR G4s to all lentiviruses. G4s in the 5'-LTR U3 region were completely conserved in primate lentiviruses. A G4 was also present in a cattle-infecting lentivirus. All other non-primate lentiviruses displayed hints of less stable G4s. In primate lentiviruses, the possibility to fold into G4s was highly conserved among strains. LTR G4 sequences were very similar among phylogenetically related primate viruses, while they increasingly differed in viruses that diverged early from a common ancestor. A strong correlation between primate lentivirus LTR G4s and Sp1/NF\u3baB binding sites was found. All LTR G4s folded: their complexity was assessed by polymerase stop assay. Our data support a role of the lentiviruses 5'-LTR G4 region as control centre of viral transcription, where folding/unfolding of G4s and multiple recruitment of factors based on both sequence and structure may take place
Fluorescence and Hybrid Detection Aperture of the Pierre Auger Observatory
The aperture of the Fluorescence Detector (FD) of the Pierre Auger
Observatory is evaluated from simulated events using different detector
configurations: mono, stereo, 3-FD and 4-FD. The trigger efficiency has been
modeled using shower profiles with ground impacts in the field of view of a
single telescope and studying the trigger response (at the different levels) by
that telescope and by its neighbours. In addition, analysis cuts imposed by
event reconstruction have been applied. The hybrid aperture is then derived for
the Auger final extension. Taking into account the actual Surface Detector (SD)
array configuration and its trigger response, the aperture is also calculated
for a typical configuration of the present phase.Comment: contribution to the 29th International Cosmic Ray Conference, Pune,
India, 3-10 August 200
Comparative leaf micromorphology, anatomy and architecture in some Mediterranean species of Pancratium (Amaryllidaceae)
Leaves in Pancratium show a gross morphological identity. Difference at macroscopic level also regards leaf tip (acute to obtuse) and lamina width. Despite such uniformity of the leaf visible traits, micro-morphological and anatomical characteristics reveal significant variation both at intra-specific and inter-specific levels, which have proven to strongly depend on adaptation to microclimatic and ecological local conditions, such as temperature, water availability, insolation. Here we present preliminary results of a comparative morpho-anatomical study on leaves of some species of Pancratium (P. foetidum Pomel, P. illyricum L., P. linosae Soldano & F. Conti, P. maritimum L., P. sickenbergeri Boiss.) to assess the range of inter-specific variation, as well as population similarity or dissimilarity related to ecological adaptation
Dianthus borbonicus (Caryophyllaceae), a new species from Sicily
Dianthus borbonicus a new species occurring in North-Western Sicily is described and illustrated. It is a rare chasmophyte
belonging to the D. sylvestris group, which is exclusive of a rupestrian stand near Rocca Busambra (Ficuzza). Its macro- and
micromorphological features (seed testa sculptures, and leaf anatomy), ecology, conservation status and a comparison with
the related species are provided too
Self-Organized Criticality model for Brain Plasticity
Networks of living neurons exhibit an avalanche mode of activity,
experimentally found in organotypic cultures. Here we present a model based on
self-organized criticality and taking into account brain plasticity, which is
able to reproduce the spectrum of electroencephalograms (EEG). The model
consists in an electrical network with threshold firing and activity-dependent
synapse strenghts. The system exhibits an avalanche activity power law
distributed. The analysis of the power spectra of the electrical signal
reproduces very robustly the power law behaviour with the exponent 0.8,
experimentally measured in EEG spectra. The same value of the exponent is found
on small-world lattices and for leaky neurons, indicating that universality
holds for a wide class of brain models.Comment: 4 pages, 3 figure
Slow-light switching in nonlinear Bragg-grating coupler
We study propagation and switching of slow-light pulses in nonlinear couplers
with phase-shifted Bragg gratings. We demonstrate that power-controlled
nonlinear self-action of light can be used to compensate dispersion-induced
broadening of pulses through the formation of gap solitons, to control pulse
switching in the coupler, and to tune the propagation velocity.Comment: 3 pages, 4 figure
Renalguard, hemofiltration and hydration in prevention of contrast induced nephropathy in patients with severe chronic kidney disease undergoing percutaneous vascular interventions
Contrast-induced nephropathy (CIN) is a frequent complication of percutaneous coronary and peripheral artery interventions and is associated with significant in-hospital and long-term morbidity and mortality. We aim to compare the impact on major events of RenalGuard system(RG), continuous veno-venous Hemofiltration (CVVH) and hydration (Hy) with sodium bicarbonate plus N-acetylcysteine in patients with severe renal failure
- …
