1,571 research outputs found
Electromagnetic Fields of Slowly Rotating Magnetized Gravastars
We study the dipolar magnetic field configuration and present solutions of
Maxwell equations in the internal background spacetime of a a slowly rotating
gravastar. The shell of gravastar where magnetic field penetrated is modeled as
sphere consisting of perfect highly magnetized fluid with infinite
conductivity. Dipolar magnetic field of the gravastar is produced by a circular
current loop symmetrically placed at radius at the equatorial plane.Comment: 5 pages, 2 figures, accepted for publication to Mod. Phys. Lett.
Secular instability in quasi-viscous disc accretion
A first-order correction in the -viscosity parameter of Shakura and
Sunyaev has been introduced in the standard inviscid and thin accretion disc. A
linearised time-dependent perturbative study of the stationary solutions of
this "quasi-viscous" disc leads to the development of a secular instability on
large spatial scales. This qualitative feature is equally manifest for two
different types of perturbative treatment -- a standing wave on subsonic
scales, as well as a radially propagating wave. Stability of the flow is
restored when viscosity disappears.Comment: 15 pages, 2 figures, AASTeX. Added some new material and upgraded the
reference lis
Perturbations on steady spherical accretion in Schwarzschild geometry
The stationary background flow in the spherically symmetric infall of a
compressible fluid, coupled to the space-time defined by the static
Schwarzschild metric, has been subjected to linearized perturbations. The
perturbative procedure is based on the continuity condition and it shows that
the coupling of the flow with the geometry of space-time brings about greater
stability for the flow, to the extent that the amplitude of the perturbation,
treated as a standing wave, decays in time, as opposed to the amplitude
remaining constant in the Newtonian limit. In qualitative terms this situation
simulates the effect of a dissipative mechanism in the classical Bondi
accretion flow, defined in the Newtonian construct of space and time. As a
result of this approach it becomes impossible to define an acoustic metric for
a conserved spherically symmetric flow, described within the framework of
Schwarzschild geometry. In keeping with this view, the perturbation, considered
separately as a high-frequency travelling wave, also has its amplitude reduced.Comment: 8 pages, no figur
Implications of nonlinearity for spherically symmetric accretion
We subject the steady solutions of a spherically symmetric accretion flow to
a time-dependent radial perturbation. The equation of the perturbation includes
nonlinearity up to any arbitrary order, and bears a form that is very similar
to the metric equation of an analogue acoustic black hole. Casting the
perturbation as a standing wave on subsonic solutions, and maintaining
nonlinearity in it up to the second order, we get the time-dependence of the
perturbation in the form of a Li\'enard system. A dynamical systems analysis of
the Li\'enard system reveals a saddle point in real time, with the implication
that instabilities will develop in the accreting system when the perturbation
is extended into the nonlinear regime. The instability of initial subsonic
states also adversely affects the temporal evolution of the flow towards a
final and stable transonic state.Comment: 14 pages, ReVTeX. Substantially revised with respect to the previous
version. Three figures and a new section (Sec. VI) adde
A Toy Model for Blandford-Znajek Mechanism
A toy model for the Blandford-Znajek mechanism is investigated: a Kerr black
hole with a toroidal electric current residing in a thin disk around the black
hole. The toroidal electric current generates a poloidal magnetic field
threading the black hole and disk. Due to the interaction of the magnetic field
with remote charged particles, the rotation of the black hole and disk induces
an electromotive force, which can power an astrophysical load at remote
distance. The power of the black hole and disk is calculated. It is found that,
for a wide range of parameters specifying the rotation of the black hole and
the distribution of the electric current in the disk, the power of the disk
exceeds the power of the black hole. The torque provided by the black hole and
disk is also calculated. The torque of the disk is comparable to the torque of
the black hole. As the disk loses its angular momentum, the mass of the disk
gradually drifts towards the black hole and gets accreted. Ultimately the power
comes from the gravitational binding energy between the disk and the black
hole, as in the standard theory of accretion disk, instead of the rotational
energy of the black hole. This suggests that the Blandford-Znajek mechanism may
be less efficient in extracting energy from a rotating black hole with a thin
disk. The limitations of our simple model and possible improvements deserved
for future work are also discussed.Comment: 16 pages, 4 figures. Accepted for publication in Physical Review
Warp propagation in astrophysical discs
Astrophysical discs are often warped, that is, their orbital planes change
with radius. This occurs whenever there is a non-axisymmetric force acting on
the disc, for example the Lense-Thirring precession induced by a misaligned
spinning black hole, or the gravitational pull of a misaligned companion. Such
misalignments appear to be generic in astrophysics. The wide range of systems
that can harbour warped discs - protostars, X-ray binaries, tidal disruption
events, quasars and others - allows for a rich variety in the disc's response.
Here we review the basic physics of warped discs and its implications.Comment: To be published in Astrophysical Black Holes by Haardt et al.,
Lecture Notes in Physics, Springer 2015. 19 pages, 2 figure
Microbial risk assessment of drinking water based on hydrodynamic modelling of pathogen concentrations in source water
Norovirus contamination of drinking water sources is an important cause of waterborne disease outbreaks. Knowledge on pathogen concentrations in source water is needed to assess the ability of a drinking water treatment plant (DWTP) to provide safe drinking water. However, pathogen enumeration in source water samples is often not sufficient to describe the source water quality. In this study, the norovirus concentrations were characterised at the contamination source, i.e. in sewage discharges. Then, the transport of norovirus within the water source (the river Gota alv in Sweden) under different loading conditions was simulated using a hydrodynamic model. Based on the estimated concentrations in source water, the required reduction of norovirus at the DWTP was calculated using quantitative microbial risk assessment (QMRA). The required reduction was compared with the estimated treatment performance at the DWTP. The average estimated concentration in source water varied between 4.8 x 10(2) and 7.5 x 10(3) genome equivalents L-1; and the average required reduction by treatment was between 7.6 and 8.8 Log(10). The treatment performance at the DWTP was estimated to be adequate to deal with all tested loading conditions, but was heavily dependent on chlorine disinfection, with the risk of poor reduction by conventional treatment and slow sand filtration. To our knowledge, this is the first article to employ discharge-based QMRA, combined with hydrodynamic modelling, in the context of drinking water. (C) 2015 Elsevier B.V. All rights reserved
Cold Plasma Dispersion Relations in the Vicinity of a Schwarzschild Black Hole Horizon
We apply the ADM 3+1 formalism to derive the general relativistic
magnetohydrodynamic equations for cold plasma in spatially flat Schwarzschild
metric. Respective perturbed equations are linearized for non-magnetized and
magnetized plasmas both in non-rotating and rotating backgrounds. These are
then Fourier analyzed and the corresponding dispersion relations are obtained.
These relations are discussed for the existence of waves with positive angular
frequency in the region near the horizon. Our results support the fact that no
information can be extracted from the Schwarzschild black hole. It is concluded
that negative phase velocity propagates in the rotating background whether the
black hole is rotating or non-rotating.Comment: 27 pages, 11 figures accepted for publication in Gen. Relat. & Gravi
Evolution of transonicity in an accretion disc
For inviscid, rotational accretion flows driven by a general pseudo-Newtonian
potential on to a Schwarzschild black hole, the only possible fixed points are
saddle points and centre-type points. For the specific choice of the Newtonian
potential, the flow has only two critical points, of which the outer one is a
saddle point while the inner one is a centre-type point. A restrictive upper
bound is imposed on the admissible range of values of the angular momentum of
sub-Keplerian flows through a saddle point. These flows are very unstable to
any deviation from a necessarily precise boundary condition. The difficulties
against the physical realisability of a solution passing through the saddle
point have been addressed through a temporal evolution of the flow, which gives
a non-perturbative mechanism for selecting a transonic solution passing through
the saddle point. An equation of motion for a real-time perturbation about the
stationary flows reveals a very close correspondence with the metric of an
acoustic black hole, which is also an indication of the primacy of
transonicity.Comment: 18 page
- …
