770 research outputs found
Altered thymic differentiation and modulation of arthritis by invariant NKT cells expressing mutant ZAP70
Various subsets of invariant natural killer T (iNKT) cells with different cytokine productions develop in the mouse thymus, but the factors driving their differentiation remain unclear. Here we show that hypomorphic alleles of Zap70 or chemical inhibition of Zap70 catalysis leads to an increase of IFN-gamma-producing iNKT cells (NKT1 cells), suggesting that NKT1 cells may require a lower TCR signal threshold. Zap70 mutant mice develop IL-17-dependent arthritis. In a mouse experimental arthritis model, NKT17 cells are increased as the disease progresses, while NKT1 numbers negatively correlates with disease severity, with this protective effect of NKT1 linked to their IFN-gamma expression. NKT1 cells are also present in the synovial fluid of arthritis patients. Our data therefore suggest that TCR signal strength during thymic differentiation may influence not only IFN-gamma production, but also the protective function of iNKT cells in arthritis
Modular construction of mammalian gene circuits using TALE transcriptional repressors
An important goal of synthetic biology is the rational design and predictable implementation of synthetic gene circuits using standardized and interchangeable parts. However, engineering of complex circuits in mammalian cells is currently limited by the availability of well-characterized and orthogonal transcriptional repressors. Here, we introduce a library of 26 reversible transcription activator–like effector repressors (TALERs) that bind newly designed hybrid promoters and exert transcriptional repression through steric hindrance of key transcriptional initiation elements. We demonstrate that using the input-output transfer curves of our TALERs enables accurate prediction of the behavior of modularly assembled TALER cascade and switch circuits. We also show that TALER switches using feedback regulation exhibit improved accuracy for microRNA-based HeLa cancer cell classification versus HEK293 cells. Our TALER library is a valuable toolkit for modular engineering of synthetic circuits, enabling programmable manipulation of mammalian cells and helping elucidate design principles of coupled transcriptional and microRNA-mediated post-transcriptional regulation.National Institutes of Health (U.S.) (Grant 5R01CA155320-04)National Institutes of Health (U.S.) (Grant P50GM098792)National Institutes of Health (U.S.) (Grant 1R01CA173712-01
The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation
Type 2 innate lymphoid cells (ILC2s) both contribute to mucosal homeostasis and initiate pathologic inflammation in allergic asthma. However, the signals that direct ILC2s to promote homeostasis versus inflammation are unclear. To identify such molecular cues, we profiled mouse lung-resident ILCs using single-cell RNA sequencing at steady state and after in vivo stimulation with the alarmin cytokines IL-25 and IL-33. ILC2s were transcriptionally heterogeneous after activation, with subpopulations distinguished by expression of proliferative, homeostatic and effector genes. The neuropeptide receptor Nmur1 was preferentially expressed by ILC2s at steady state and after IL-25 stimulation. Neuromedin U (NMU), the ligand of NMUR1, activated ILC2s in vitro, and in vivo co-administration of NMU with IL-25 strongly amplified allergic inflammation. Loss of NMU-NMUR1 signalling reduced ILC2 frequency and effector function, and altered transcriptional programs following allergen challenge in vivo. Thus, NMUR1 signalling promotes inflammatory ILC2 responses, highlighting the importance of neuro-immune crosstalk in allergic inflammation at mucosal surfaces
Decoding the regulatory network of early blood development from single-cell gene expression measurements.
Reconstruction of the molecular pathways controlling organ development has been hampered by a lack of methods to resolve embryonic progenitor cells. Here we describe a strategy to address this problem that combines gene expression profiling of large numbers of single cells with data analysis based on diffusion maps for dimensionality reduction and network synthesis from state transition graphs. Applying the approach to hematopoietic development in the mouse embryo, we map the progression of mesoderm toward blood using single-cell gene expression analysis of 3,934 cells with blood-forming potential captured at four time points between E7.0 and E8.5. Transitions between individual cellular states are then used as input to develop a single-cell network synthesis toolkit to generate a computationally executable transcriptional regulatory network model of blood development. Several model predictions concerning the roles of Sox and Hox factors are validated experimentally. Our results demonstrate that single-cell analysis of a developing organ coupled with computational approaches can reveal the transcriptional programs that underpin organogenesis.We thank J. Downing (St. Jude Children's Research Hospital, Memphis, TN, USA) for the Runx1-ires-GFP mouse. Research in the authors' laboratory is supported by the Medical Research Council, Biotechnology and Biological Sciences Research Council, Leukaemia and Lymphoma Research, the Leukemia and Lymphoma Society, Microsoft Research and core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research and Wellcome Trust - MRC Cambridge Stem Cell Institute. V.M. is supported by a Medical Research Council Studentship and Centenary Award and S.W. by a Microsoft Research PhD Scholarship.This is the accepted manuscript for a paper published in Nature Biotechnology 33, 269–276 (2015) doi:10.1038/nbt.315
Assessment of pediatric asthma drug use in three European countries; a TEDDY study.
Asthma drugs are amongst the most frequently used drugs in childhood, but international comparisons on type and indication of use are lacking. The aim of this study was to describe asthma drug use in children with and without asthma in the Netherlands (NL), Italy (IT), and the United Kingdom (UK). We conducted a retrospective analysis of outpatient medical records of children 0-18 years from 1 January 2000 until 31 December 2005. For all children, prescription rates of asthma drugs were studied by country, age, asthma diagnosis, and off-label status. One-year prevalence rates were calculated per 100 children per patient-year (PY). The cohort consisted of 671,831 children of whom 49,442 had been diagnosed with asthma at any time during follow-up. ß2-mimetics and inhaled steroids were the most frequently prescribed asthma drug classes in NL (4.9 and 4.1/100 PY), the UK (8.7 and 5.3/100 PY) and IT (7.2 and 16.2/100 PY), respectively. Xanthines, anticholinergics, leukotriene receptor antagonists, and anti-allergics were prescribed in less than one child per 100 per year. In patients without asthma, ß2-mimetics were used most frequently. Country differences were highest for steroids, (Italy highest), and for ß2-mimetics (the UK highest). Off-label use was low, and most pronounced for ß2-mimetics in children <18 months (IT) and combined ß2-mimetics + anticholinergics in children <6 years (NL). CONCLUSION: This study shows that among all asthma drugs, ß2-mimetics and inhaled steroids are most often used, also in children without asthma, and with large variability between countries. Linking multi-country databases allows us to study country specific pediatric drug use in a systematic manner without being hampered by methodological differences. This study underlines the potency of healthcare databases in rapidly providing data on pediatric drug use and possibly safety
Burden of acute otitis media in primary care pediatrics in Italy: A secondary data analysis from the Pedianet database
Background: The incidence of acute otitis media (AOM) vary from country to country. Geographical variations together with differences in study designs, reporting and settings play a role. We assessed the incidence of AOM in Italian children seen by primary care paediatricians (PCPs), and described the methods used to diagnose the disease.Methods: This secondary data analysis from the Pedianet database considered children aged 0 - 6 years between 01/2003 and 12/2007. The AOM episodes were identified and validated by means of patient diaries. Incidence rates/100 person-years (PY) were calculated for total AOM and for single or recurrent AOM.Results: The 92,373 children (52.1% males) were followed up for a total of 227,361 PY: 23,039 (24.9%) presented 38,241 episodes of AOM (94.6% single episodes and 5.4% recurrent episodes). The total incidence rate of AOM in the 5-year period was 16.8 episodes per 100 PY (95% CI: 16.7-16.9), including single AOM (15.9 episodes per 100 PY; 95% CI: 15.7-16.1) and recurrent AOM (0.9 episodes per 100 PY; 95% CI: 0.9-0.9). There was a slight and continuously negative trend decrease over time (annual percent change -4.6%; 95%CI: -5.3, -3.9%). The AOM incidence rate varied with age, peaking in children aged 3 to 4 years (22.2 episodes per 100 PY; 95% CI 21.8-22.7). The vast majority of the AOM episodes (36,842/38,241, 96.3%) were diagnosed using a static otoscope; a pneumatic otoscope was used in only 3.7%.Conclusions: Our data fill a gap in our knowledge of the incidence of AOM in Italy, and indicate that AOM represents a considerable burden for the Italian PCP system. Educational programmes concerning the diagnosis of AOM are needed, as are further studies to monitor the incidence in relation to the introduction of wider pneumococcal conjugate vaccines
Prevalence and determinants of hip pain in non-ambulatory cerebral palsy children: a retrospective cohort study
BACKGROUND: Hip pain is common in cerebral palsy children, particularly at Gross-Motor Function Classification System level IV-V. It is associated to hip displacement and relates to the migration percentage. Recent literature suggested early reconstructive bone surgery, as the best approach to prevent hip luxation, then hip pain. Still, high rates of hip pain are reported.AIM: To investigate prevalence and determinants of hip pain in an Italian cerebral palsy sample.DESIGN: Single-center retrospective cohort study.SETTING: Inpatient and outpatient. POPULATION: Patients with spastic or dyskinetic cerebral palsy, Gross-Motor Function Classification System level IV or V, age 0-18.METHODS: A chart review was implemented to report hip pain, as a dichotomous variable (pain/no pain), age, sex, cerebral palsy subtype, Gross-Motor Function level, lumbar scoliosis, migration percentage, previous orthopedic surgery, or botulinum injections, oral or intrathecal baclofen, drug-resistant epilepsy, assistive devices for standing or walking. Descriptive statistics and a multivariate logistic stepwise regression were performed.RESULTS: A total of 504 subjects were included: 302 level V, 209 females, 432 spastics. The mean length of follow-up was 6 years. The overall prevalence of hip pain was 8.9% (6.3% were at level V) and of hip dislocation was 19% (15.9% were at level V). Just 39% of dislocated hips were painful. Children at spastic subtype and level V were predominantly affected. Botulinum and soft tissue surgery related to lower rates of hip pain, without statistical significance. Age (OR 1.19, 95%CI 1.14-1.25, P value 0.000), sex (OR 1.72, 95%CI 1.18-2.52, P value 0.005), migration percentage (OR 1.02, 95%CI 1.02-1.03, P value 0.000) and lumbar scoliosis (OR 1.32, 95%CI 0.86-2.01, P value 0.200) resulted significant independent determinants of hip pain. CONCLUSIONS: Hip pain relates with the migration percentage, but not all dislocated hips become painful. Hip pain may be transient and requires a targeted and individualized approach. Children at spastic subtype and level V were predominantly affected. Age and sex are confirmed as determinants. Specific validated measures are to be implemented to assess hip pain.CLINICAL REHABILITATION IMPACT: Considering severe non-ambulatory cerebral palsy patients, pain and quality of life should be con-sidered as outcomes, in the management of hip luxation.(Cite this article as: Faccioli S, Sassi S, Ferrari A, Corradini E, Toni F, Kaleci S, et al. Prevalence and determinants of hip pain in non-ambulatory cerebral palsy children: a retrospective cohort study. Eur J Phys Rehabil Med 2023;59:32-41. DOI: 10.23736/S1973-9087.22.07725-5
Health-related quality of life and psychological features in post-stroke patients with chronic pain: A cross-sectional study in the neuro-rehabilitation context of care
This study aims at exploring disability, health-related quality of life (HrQoL), psychological distress, and psychological features in post-stroke patients with chronic pain. An observational cross-sectional study involving 50 post-stroke patients (25 with chronic pain and 25 without pain) was conducted. The primary outcome was the self-reported level of disability and HrQoL which were both assessed through the Stroke Impact Scale 3.0. Both psychological distress and specific psychological features (i.e., self-efficacy, coping strategies, psychological flexibility, perceived social support) were examined. Post-stroke patients with chronic pain reported statistically significant higher levels of disability and worse HrQoL, higher psychological distress and inflexibility, as well as a lower level of self-efficacy and problem-oriented coping strategies than patients without pain (p < 0.001). Finally, correlation analysis in the group of stroke survivors with pain showed that higher levels of disability were significantly related to higher psychological distress. This study con-firms the negative influence of chronic pain on disability and HrQoL in post-stroke patients and presents preliminary insights on the association between chronic pain, disability, HrQoL, psychosocial distress, and the patient’s approach in dealing with personal difficulties and emotions. These findings carry further implications for multidisciplinary management of post-stroke patients with chronic pain
Temperature-Compensated Solution Concentration Measurements Using Photonic Crystal Fiber-Tip Sensors
We demonstrate fiber optic sensors with temperature compensation for the accurate measurement of ethanol concentration in aqueous solutions. The device consists of two photonic crystal (PhC) fiber-tip sensors: one measures the ethanol concentration via refractive index (RI) changes and the other one is isolated from the liquid for the independent measurement of temperature. The probes utilize an optimized PhC design providing a Lorentzian-like, polarization-independent response, enabling a very low imprecision (pm-level) in the wavelength determination. By combining the information from the two probes, it is possible to compensate for the effect that the temperature has on the concentration measurement, obtaining more accurate estimations of the ethanol concentration in a broad range of temperatures. We demonstrate the simultaneous and single-point measurements of temperature and ethanol concentration in water, with sensitivities of 19 pm/°C and ∼53 pm/%, in the ranges of 25 °C to 55 °C and 0 to (Formula presented.) (at 25 °C), respectively. Moreover, a maximum error of (Formula presented.) in the concentration measurement, with a standard deviation of ≤0.8%, was obtained in the entire temperature range after compensating for the effect of temperature. A limit of detection as low as (Formula presented.) was demonstrated for the concentration measurement in temperature-stable conditions.</p
- …
