365 research outputs found

    Dichloromethylation of enones by carbon nitride photocatalysis

    No full text
    Small organic radicals are ubiquitous intermediates in photocatalysis and are used in organic synthesis to install functional groups and to tune electronic properties and pharmacokinetic parameters of the final molecule. Development of new methods to generate small organic radicals with added functionality can further extend the utility of photocatalysis for synthetic needs. Herein, we present a method to generate dichloromethyl radicals from chloroform using a heterogeneous potassium poly(heptazine imide) (K-PHI) photocatalyst under visible light irradiation for C1-extension of the enone backbone. The method is applied on 15 enones, with γ,γ-dichloroketones yields of 18–89%. Due to negative zeta-potential (−40 mV) and small particle size (100 nm) K-PHI suspension is used in quasi-homogeneous flow-photoreactor increasing the productivity by 19 times compared to the batch approach. The resulting γ,γ-dichloroketones, are used as bifunctional building blocks to access value-added organic compounds such as substituted furans and pyrroles

    Ultra-Long Pharmacokinetic Properties of Insulin Degludec are Comparable in Elderly Subjects and Younger Adults with Type 1 Diabetes Mellitus

    Get PDF
    BACKGROUND: Management of diabetes in elderly subjects is complex and careful management of glucose levels is of particular importance in this population because of an increased risk of diabetes-related complications and hypoglycaemia. OBJECTIVE: The aim of this study was to evaluate the pharmacokinetic and pharmacodynamic properties of insulin degludec (IDeg), a basal insulin with an ultra-long duration of action, in elderly subjects with type 1 diabetes compared with younger adults. METHODS: This trial was a randomised, double-blind, two-period, crossover trial conducted in a single centre and included both inpatient and outpatient periods. Subjects were men and women aged 18–35 years inclusive (younger adult group) or ≥65 years (elderly group) with type 1 diabetes who received IDeg (0.4 U/kg) via subcutaneous injection in the thigh once-daily for six days. Following 6-day dosing, a 26-hour euglycaemic glucose clamp procedure was conducted to evaluate the steady-state pharmacodynamic effects of IDeg. Blood samples were taken for pharmacokinetic analysis up to 120 h post-dose. Pharmacokinetic endpoints included the total exposure of IDeg, ie the area under the IDeg serum concentration curve during one dosing interval at steady state (AUC(IDeg,τ,SS)) (τ = 0–24 h, equal to one dosing interval) and the maximum IDeg serum concentration at steady state (C(max,IDeg,SS)). Pharmacodynamic endpoints included the total glucose-lowering effect of IDeg, ie the area under the glucose infusion rate (GIR) curve at steady state (AUC(GIR,τ,SS)), and the maximum GIR at steady state (GIR(max,IDeg,SS)). RESULTS: Total exposure (AUC(IDeg,τ,SS)) and maximum concentration (C(max,IDeg,SS)) of IDeg were comparable between elderly subjects and younger adults. Estimated mean age group ratios (elderly/younger adult) for AUC(IDeg,τ,SS) and C(max,IDeg,SS) and corresponding two-sided 95 % confidence intervals (CIs) were 1.04 (95 % CI 0.73–1.47) and 1.02 (95 % CI 0.74–1.39), respectively. Mean AUC(IDeg,0–12h,SS)/AUC(IDeg,τ,SS) was 53 % in both younger adult and elderly subjects, showing that in both age groups IDeg exposure was evenly distributed across the first and second 12 h of the 24-hour dosing interval. No statistically significant differences were observed between younger adult and elderly subjects with regard to AUC(GIR,τ,SS) (the primary endpoint of this study) and GIR(max,IDeg,SS). Estimated mean age group ratios (elderly/younger adult) for AUC(GIR,τ,SS) and GIR(max,IDeg,SS) and corresponding two-sided 95 % CIs were 0.78 (95 % CI 0.47–1.31) and 0.80 (95 % CI 0.54–1.17), respectively. Duration of action was beyond the clamp duration of 26 h in all subjects. CONCLUSIONS: The exposure of IDeg at steady state during once-daily dosing was similar in younger adult and elderly subjects. The glucose-lowering effect of IDeg was numerically lower in elderly subjects compared with younger adults, but no significant differences were observed between age groups. The ultra-long pharmacokinetic and pharmacodynamic properties of IDeg observed in younger adults were preserved in elderly subjects with type 1 diabetes. Clinical trials.gov number: NCT0096441

    Emerging concepts in photocatalytic organic synthesis

    Get PDF
    Visible light photocatalysis has become a powerful tool in organic synthesis that uses photons as traceless, sustainable reagents. Most of the activities in the field focus on the development of new reactions via common photoredox cycles, but recently a number of exciting new concepts and strategies entered less charted territories. We survey approaches that enable the use of longer wavelengths and show that the wavelength and intensity of photons are import parameters that enable tuning of the reactivity of a photocatalysts to control or change the selectivity of chemical reactions. In addition, we discuss recent efforts to substitute strong reductants, such as elemental lithium and sodium, by light, and technological advances in the field

    Recyclable, bifunctional metallaphotocatalysts for C–S cross-couplings

    Get PDF
    Metallaphotocatalytic cross-couplings are typically carried out by combining homogeneous or heterogeneous photocatalysts with a soluble nickel complex. Attempts to realize recyclable catalytic systems use immobilized iridium complexes to harvest light. We present bifunctional, materials for metallaphotocatalytic C–S cross couplings that can be reused without losing their catalytic activity. Key to the success is the permanent immobilization of a nickel complex on the surface of a heterogeneous semiconductor through phosphonic acid anchors. The optimized catalyst harvests a broad range of the visible light spectrum and requires a nickel loading of only ~0.1 mol%

    Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential

    Get PDF
    Cooking is widely recognized as an important source of indoor and outdoor particle and volatile organic compound emissions with potential deleterious effects on human health. Nevertheless, cooking emissions remain poorly characterized. Here the effect of herbs and pepper on cooking emissions was investigated for the first time to the best of our knowledge using state of the art mass spectrometric analysis of particle and gas-phase composition. Further, the secondary organic aerosol production potential of the gas-phase emissions was determined by smog chamber aging experiments. The emissions of frying meat with herbs and pepper include large amounts of mono-, sesqui- and diterpenes as well as various terpenoids and p-cymene. The average total terpene emission rate from the use of herbs and pepper during cooking is estimated to be 46 ± 5 gg-1 Herbs min-1. These compounds are highly reactive in the atmosphere and lead to significant amounts of secondary organic aerosol upon aging. In summary we demonstrate that cooking with condiments can constitute an important yet overlooked source of terpenes in indoor air

    Two-stroke scooters are a dominant source of air pollution in many cities.

    Get PDF
    Fossil fuel-powered vehicles emit significant particulate matter, for example, black carbon and primary organic aerosol, and produce secondary organic aerosol. Here we quantify secondary organic aerosol production from two-stroke scooters. Cars and trucks, particularly diesel vehicles, are thought to be the main vehicular pollution sources. This needs re-thinking, as we show that elevated particulate matter levels can be a consequence of 'asymmetric pollution' from two-stroke scooters, vehicles that constitute a small fraction of the fleet, but can dominate urban vehicular pollution through organic aerosol and aromatic emission factors up to thousands of times higher than from other vehicle classes. Further, we demonstrate that oxidation processes producing secondary organic aerosol from vehicle exhaust also form potentially toxic 'reactive oxygen species'.This work was supported by the Swiss Federal Office for the Environment (FOEN), the Federal Roads Office (FEDRO), the Swiss National Science Foundation (Ambizione PZ00P2_131673, SAPMAV 200021_13016), the EU commission (FP7, COFUND: PSI-Fellow, grant agreement n.° 290605), the UK Natural Environment Research Council (NERC), the French Environment and Energy Management Agency (ADEME, Grant number 1162C00O2) and the Velux Foundation.This is the accepted manuscript version. The final version is available from http://www.nature.com/ncomms/2014/140513/ncomms4749/full/ncomms4749.html

    Pharmacokinetic Properties of Liraglutide as Adjunct to Insulin in Subjects with Type 1 Diabetes Mellitus.

    Get PDF
    BACKGROUND: The pharmacokinetic properties of liraglutide, a glucagon-like peptide-1 receptor agonist approved for the treatment of type 2 diabetes mellitus (T2D), have been established in healthy individuals and subjects with T2D. Liraglutide has been under investigation as adjunct treatment to insulin in type 1 diabetes mellitus (T1D). This single-center, double-blind, placebo-controlled, crossover, clinical pharmacology trial is the first to analyze the pharmacokinetic properties of liraglutide as add-on to insulin in T1D. METHODS: Subjects (18-64 years; body mass index 20.0-28.0 kg/m(2); glycated hemoglobin ≤9.5 %) were randomized 1:1:1 to 0.6, 1.2, or 1.8 mg liraglutide/placebo. Each group underwent two 4-week treatment periods (liraglutide then placebo or placebo then liraglutide) separated by a 2- to 3-week washout. Both trial drugs were administered subcutaneously, once daily, as adjunct to insulin. A stepwise hypoglycemic clamp was performed at the end of each treatment period (data reported previously). Pharmacokinetic endpoints were derived from liraglutide concentration-time curves after the final dose and exposure was compared with data from previous trials in healthy volunteers and subjects with T2D. RESULTS: The pharmacokinetic properties of liraglutide in T1D were comparable with those observed in healthy volunteers and subjects with T2D. Area under the steady-state concentration-time curve (AUC) and maximum plasma concentration data were consistent with dose proportionality of liraglutide. Comparison of dose-normalized liraglutide AUC suggested that exposure in T1D, when administered with insulin, is comparable with that observed in T2D. CONCLUSIONS: Liraglutide, administered as adjunct to insulin in subjects with T1D, shows comparable pharmacokinetics to those in subjects with T2D. ClinicalTrials.gov Identifier: NCT01536665

    Heterogeneous metallaphotoredox catalysis in a continuous-flow packed-bed reactor

    Get PDF
    Metallaphotoredox catalysis is a powerful and versatile synthetic platform that enables cross-couplings under mild conditions without the need for noble metals. Its growing adoption in drug discovery has translated into an increased interest in sustainable and scalable reaction conditions. Here, we report a continuous-flow approach to metallaphotoredox catalysis using a heterogeneous catalyst that combines the function of a photo- and a nickel catalyst in a single material. The catalyst is embedded in a packed-bed reactor to combine reaction and (catalyst) separation in one step. The use of a packed bed simplifies the translation of optimized batch reaction conditions to continuous flow, as the only components present in the reaction mixture are the substrate and a base. The metallaphotoredox cross-coupling of sulfinates with aryl halides was used as a model system. The catalyst was shown to be stable, with a very low decrease of the yield (≈1% per day) during a continuous experiment over seven days, and to be effective for C–O arylations when carboxylic acids are used as nucleophile instead of sulfinates

    Dietary spermidine for lowering high blood pressure

    Get PDF
    Loss of cardiac macroautophagy/autophagy impairs heart function, and evidence accumulates that an increased autophagic flux may protect against cardiovascular disease. We therefore tested the protective capacity of the natural autophagy inducer spermidine in animal models of aging and hypertension, which both represent major risk factors for the development of cardiovascular disease. Dietary spermidine elicits cardioprotective effects in aged mice through enhancing cardiac autophagy and mitophagy. In salt-sensitive rats, spermidine supplementation also delays the development of hypertensive heart disease, coinciding with reduced arterial blood pressure. The high blood pressure-lowering effect likely results from improved global arginine bioavailability and protection from hypertension-associated renal damage. The polyamine spermidine is naturally present in human diets, though to a varying amount depending on food type and preparation. In humans, high dietary spermidine intake correlates with reduced blood pressure and decreased risk of cardiovascular disease and related death. Altogether, spermidine represents a cardio- and vascular- protective autophagy inducer that can be readily integrated in common diets

    'Preconditioning' with Low Dose Lipopolysaccharide Aggravates the Organ Injury/Dysfunction Caused by Hemorrhagic Shock in Rats

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedRS is supported by the Program Science without Borders, CAPES Foundation, Ministry of Education of Brazil, Brasilia/DF, Brazil; NSAP is, in part, supported by the Bart’s and The London Charity (753/1722). The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no 608765, from the William Harvey Research Foundation and University of Turin (Ricerca Locale ex-60%). This work contributes to the Organ Protection research theme of the Barts Centre for Trauma Sciences, supported by the Barts and The London Charity (Award 753/1722
    corecore