2,157 research outputs found
Gauss-Codazzi thermodynamics on the timelike screen
It is a known result by Jacobson that the flux of energy-matter through a
local Rindler horizon is related with the expansion of the null generators in a
way that mirrors the first law of thermodynamics. We extend such a result to a
timelike screen of observers with finite acceleration. Since timelike curves
have more freedom than null geodesics, the construction is more involved than
Jacobson's and few geometrical constraints need to be imposed: the observers'
acceleration has to be constant in time and everywhere orthogonal to the
screen. Moreover, at any given time, the extrinsic curvature of the screen has
to be flat. The latter requirement can be weakened by asking that the extrinsic
curvature, if present at the beginning, evolves in time like on a cone and just
rescales proportionally to the expansion.Comment: 8+1 pages, final versio
Absorption of mass and angular momentum by a black hole: Time-domain formalisms for gravitational perturbations, and the small-hole/slow-motion approximation
The first objective of this work is to obtain practical prescriptions to
calculate the absorption of mass and angular momentum by a black hole when
external processes produce gravitational radiation. These prescriptions are
formulated in the time domain within the framework of black-hole perturbation
theory. Two such prescriptions are presented. The first is based on the
Teukolsky equation and it applies to general (rotating) black holes. The second
is based on the Regge-Wheeler and Zerilli equations and it applies to
nonrotating black holes. The second objective of this work is to apply the
time-domain absorption formalisms to situations in which the black hole is
either small or slowly moving. In the context of this small-hole/slow-motion
approximation, the equations of black-hole perturbation theory can be solved
analytically, and explicit expressions can be obtained for the absorption of
mass and angular momentum. The changes in the black-hole parameters can then be
understood in terms of an interaction between the tidal gravitational fields
supplied by the external universe and the hole's tidally-induced mass and
current quadrupole moments. For a nonrotating black hole the quadrupole moments
are proportional to the rate of change of the tidal fields on the hole's world
line. For a rotating black hole they are proportional to the tidal fields
themselves.Comment: 36 pages, revtex4, no figures, final published versio
A light-cone gauge for black-hole perturbation theory
The geometrical meaning of the Eddington-Finkelstein coordinates of
Schwarzschild spacetime is well understood: (i) the advanced-time coordinate v
is constant on incoming light cones that converge toward r=0, (ii) the angles
theta and phi are constant on the null generators of each light cone, (iii) the
radial coordinate r is an affine-parameter distance along each generator, and
(iv) r is an areal radius, in the sense that 4 pi r^2 is the area of each
two-surface (v,r) = constant. The light-cone gauge of black-hole perturbation
theory, which is formulated in this paper, places conditions on a perturbation
of the Schwarzschild metric that ensure that properties (i)--(iii) of the
coordinates are preserved in the perturbed spacetime. Property (iv) is lost in
general, but it is retained in exceptional situations that are identified in
this paper. Unlike other popular choices of gauge, the light-cone gauge
produces a perturbed metric that is expressed in a meaningful coordinate
system; this is a considerable asset that greatly facilitates the task of
extracting physical consequences. We illustrate the use of the light-cone gauge
by calculating the metric of a black hole immersed in a uniform magnetic field.
We construct a three-parameter family of solutions to the perturbative
Einstein-Maxwell equations and argue that it is applicable to a broader range
of physical situations than the exact, two-parameter Schwarzschild-Melvin
family.Comment: 12 page
Intrinsic and extrinsic geometries of a tidally deformed black hole
A description of the event horizon of a perturbed Schwarzschild black hole is
provided in terms of the intrinsic and extrinsic geometries of the null
hypersurface. This description relies on a Gauss-Codazzi theory of null
hypersurfaces embedded in spacetime, which extends the standard theory of
spacelike and timelike hypersurfaces involving the first and second fundamental
forms. We show that the intrinsic geometry of the event horizon is invariant
under a reparameterization of the null generators, and that the extrinsic
geometry depends on the parameterization. Stated differently, we show that
while the extrinsic geometry depends on the choice of gauge, the intrinsic
geometry is gauge invariant. We apply the formalism to solutions to the vacuum
field equations that describe a tidally deformed black hole. In a first
instance we consider a slowly-varying, quadrupolar tidal field imposed on the
black hole, and in a second instance we examine the tide raised during a close
parabolic encounter between the black hole and a small orbiting body.Comment: 27 pages, 4 figure
Gravitational waves from binary systems in circular orbits: Convergence of a dressed multipole truncation
The gravitational radiation originating from a compact binary system in
circular orbit is usually expressed as an infinite sum over radiative multipole
moments. In a slow-motion approximation, each multipole moment is then
expressed as a post-Newtonian expansion in powers of v/c, the ratio of the
orbital velocity to the speed of light. The bare multipole truncation of the
radiation consists in keeping only the leading-order term in the post-Newtonian
expansion of each moment, but summing over all the multipole moments. In the
case of binary systems with small mass ratios, the bare multipole series was
shown in a previous paper to converge for all values v/c < 2/e, where e is the
base of natural logarithms. In this paper, we extend the analysis to a dressed
multipole truncation of the radiation, in which the leading-order moments are
corrected with terms of relative order (v/c)^2 and (v/c)^3. We find that the
dressed multipole series converges also for all values v/c < 2/e, and that it
coincides (within 1%) with the numerically ``exact'' results for v/c < 0.2.Comment: 9 pages, ReVTeX, 1 postscript figur
Sudden future singularities in FLRW cosmologies
The standard energy conditions of classical general relativity are applied to
FLRW cosmologies containing sudden future singularities. Here we show, in a
model independent way, that although such cosmologies can satisfy the null,
weak and strong energy conditions, they always fail to satisfy the dominant
energy condition. They require a divergent spacelike energy flux in all but the
comoving frame.Comment: revtex4. Added references and a definition. To appear in CQ
Osculating orbits in Schwarzschild spacetime, with an application to extreme mass-ratio inspirals
We present a method to integrate the equations of motion that govern bound,
accelerated orbits in Schwarzschild spacetime. At each instant the true
worldline is assumed to lie tangent to a reference geodesic, called an
osculating orbit, such that the worldline evolves smoothly from one such
geodesic to the next. Because a geodesic is uniquely identified by a set of
constant orbital elements, the transition between osculating orbits corresponds
to an evolution of the elements. In this paper we derive the evolution
equations for a convenient set of orbital elements, assuming that the force
acts only within the orbital plane; this is the only restriction that we impose
on the formalism, and we do not assume that the force must be small. As an
application of our method, we analyze the relative motion of two massive
bodies, assuming that one body is much smaller than the other. Using the hybrid
Schwarzschild/post-Newtonian equations of motion formulated by Kidder, Will,
and Wiseman, we treat the unperturbed motion as geodesic in a Schwarzschild
spacetime whose mass parameter is equal to the system's total mass. The force
then consists of terms that depend on the system's reduced mass. We highlight
the importance of conservative terms in this force, which cause significant
long-term changes in the time-dependence and phase of the relative orbit. From
our results we infer some general limitations of the radiative approximation to
the gravitational self-force, which uses only the dissipative terms in the
force.Comment: 18 pages, 6 figures, final version to be published in Physical Review
Self force in 2+1 electrodynamics
The radiation reaction problem for an electric charge moving in flat
space-time of three dimensions is discussed. The divergences stemming from the
pointness of the particle are studied. A consistent regularization procedure is
proposed, which exploits the Poincar\'e invariance of the theory. Effective
equation of motion of radiating charge in an external electromagnetic field is
obtained via the consideration of energy-momentum and angular momentum
conservation. This equation includes the effect of the particle's own field.
The radiation reaction is determined by the Lorentz force of point-like charge
acting upon itself plus a non-local term which provides finiteness of the
self-action.Comment: 20 pages, 3 figure
Can the post-Newtonian gravitational waveform of an inspiraling binary be improved by solving the energy balance equation numerically?
The detection of gravitational waves from inspiraling compact binaries using
matched filtering depends crucially on the availability of accurate template
waveforms. We determine whether the accuracy of the templates' phasing can be
improved by solving the post-Newtonian energy balance equation numerically,
rather than (as is normally done) analytically within the post-Newtonian
perturbative expansion. By specializing to the limit of a small mass ratio, we
find evidence that there is no gain in accuracy.Comment: 13 pages, RevTeX, 5 figures included via eps
On the fate of singularities and horizons in higher derivative gravity
We study static spherically symmetric solutions of high derivative gravity
theories, with 4, 6, 8 and even 10 derivatives. Except for isolated points in
the space of theories with more than 4 derivatives, only solutions that are
nonsingular near the origin are found. But these solutions cannot smooth out
the Schwarzschild singularity without the appearance of a second horizon. This
conundrum, and the possibility of singularities at finite r, leads us to study
numerical solutions of theories truncated at four derivatives. Rather than two
horizons we are led to the suggestion that the original horizon is replaced by
a rapid nonsingular transition from weak to strong gravity. We also consider
this possibility for the de Sitter horizon.Comment: 15 pages, 3 figures, improvements and references added, to appear in
PR
- …
