2,157 research outputs found

    Gauss-Codazzi thermodynamics on the timelike screen

    Full text link
    It is a known result by Jacobson that the flux of energy-matter through a local Rindler horizon is related with the expansion of the null generators in a way that mirrors the first law of thermodynamics. We extend such a result to a timelike screen of observers with finite acceleration. Since timelike curves have more freedom than null geodesics, the construction is more involved than Jacobson's and few geometrical constraints need to be imposed: the observers' acceleration has to be constant in time and everywhere orthogonal to the screen. Moreover, at any given time, the extrinsic curvature of the screen has to be flat. The latter requirement can be weakened by asking that the extrinsic curvature, if present at the beginning, evolves in time like on a cone and just rescales proportionally to the expansion.Comment: 8+1 pages, final versio

    Absorption of mass and angular momentum by a black hole: Time-domain formalisms for gravitational perturbations, and the small-hole/slow-motion approximation

    Full text link
    The first objective of this work is to obtain practical prescriptions to calculate the absorption of mass and angular momentum by a black hole when external processes produce gravitational radiation. These prescriptions are formulated in the time domain within the framework of black-hole perturbation theory. Two such prescriptions are presented. The first is based on the Teukolsky equation and it applies to general (rotating) black holes. The second is based on the Regge-Wheeler and Zerilli equations and it applies to nonrotating black holes. The second objective of this work is to apply the time-domain absorption formalisms to situations in which the black hole is either small or slowly moving. In the context of this small-hole/slow-motion approximation, the equations of black-hole perturbation theory can be solved analytically, and explicit expressions can be obtained for the absorption of mass and angular momentum. The changes in the black-hole parameters can then be understood in terms of an interaction between the tidal gravitational fields supplied by the external universe and the hole's tidally-induced mass and current quadrupole moments. For a nonrotating black hole the quadrupole moments are proportional to the rate of change of the tidal fields on the hole's world line. For a rotating black hole they are proportional to the tidal fields themselves.Comment: 36 pages, revtex4, no figures, final published versio

    A light-cone gauge for black-hole perturbation theory

    Get PDF
    The geometrical meaning of the Eddington-Finkelstein coordinates of Schwarzschild spacetime is well understood: (i) the advanced-time coordinate v is constant on incoming light cones that converge toward r=0, (ii) the angles theta and phi are constant on the null generators of each light cone, (iii) the radial coordinate r is an affine-parameter distance along each generator, and (iv) r is an areal radius, in the sense that 4 pi r^2 is the area of each two-surface (v,r) = constant. The light-cone gauge of black-hole perturbation theory, which is formulated in this paper, places conditions on a perturbation of the Schwarzschild metric that ensure that properties (i)--(iii) of the coordinates are preserved in the perturbed spacetime. Property (iv) is lost in general, but it is retained in exceptional situations that are identified in this paper. Unlike other popular choices of gauge, the light-cone gauge produces a perturbed metric that is expressed in a meaningful coordinate system; this is a considerable asset that greatly facilitates the task of extracting physical consequences. We illustrate the use of the light-cone gauge by calculating the metric of a black hole immersed in a uniform magnetic field. We construct a three-parameter family of solutions to the perturbative Einstein-Maxwell equations and argue that it is applicable to a broader range of physical situations than the exact, two-parameter Schwarzschild-Melvin family.Comment: 12 page

    Intrinsic and extrinsic geometries of a tidally deformed black hole

    Full text link
    A description of the event horizon of a perturbed Schwarzschild black hole is provided in terms of the intrinsic and extrinsic geometries of the null hypersurface. This description relies on a Gauss-Codazzi theory of null hypersurfaces embedded in spacetime, which extends the standard theory of spacelike and timelike hypersurfaces involving the first and second fundamental forms. We show that the intrinsic geometry of the event horizon is invariant under a reparameterization of the null generators, and that the extrinsic geometry depends on the parameterization. Stated differently, we show that while the extrinsic geometry depends on the choice of gauge, the intrinsic geometry is gauge invariant. We apply the formalism to solutions to the vacuum field equations that describe a tidally deformed black hole. In a first instance we consider a slowly-varying, quadrupolar tidal field imposed on the black hole, and in a second instance we examine the tide raised during a close parabolic encounter between the black hole and a small orbiting body.Comment: 27 pages, 4 figure

    Gravitational waves from binary systems in circular orbits: Convergence of a dressed multipole truncation

    Get PDF
    The gravitational radiation originating from a compact binary system in circular orbit is usually expressed as an infinite sum over radiative multipole moments. In a slow-motion approximation, each multipole moment is then expressed as a post-Newtonian expansion in powers of v/c, the ratio of the orbital velocity to the speed of light. The bare multipole truncation of the radiation consists in keeping only the leading-order term in the post-Newtonian expansion of each moment, but summing over all the multipole moments. In the case of binary systems with small mass ratios, the bare multipole series was shown in a previous paper to converge for all values v/c < 2/e, where e is the base of natural logarithms. In this paper, we extend the analysis to a dressed multipole truncation of the radiation, in which the leading-order moments are corrected with terms of relative order (v/c)^2 and (v/c)^3. We find that the dressed multipole series converges also for all values v/c < 2/e, and that it coincides (within 1%) with the numerically ``exact'' results for v/c < 0.2.Comment: 9 pages, ReVTeX, 1 postscript figur

    Sudden future singularities in FLRW cosmologies

    Full text link
    The standard energy conditions of classical general relativity are applied to FLRW cosmologies containing sudden future singularities. Here we show, in a model independent way, that although such cosmologies can satisfy the null, weak and strong energy conditions, they always fail to satisfy the dominant energy condition. They require a divergent spacelike energy flux in all but the comoving frame.Comment: revtex4. Added references and a definition. To appear in CQ

    Osculating orbits in Schwarzschild spacetime, with an application to extreme mass-ratio inspirals

    Full text link
    We present a method to integrate the equations of motion that govern bound, accelerated orbits in Schwarzschild spacetime. At each instant the true worldline is assumed to lie tangent to a reference geodesic, called an osculating orbit, such that the worldline evolves smoothly from one such geodesic to the next. Because a geodesic is uniquely identified by a set of constant orbital elements, the transition between osculating orbits corresponds to an evolution of the elements. In this paper we derive the evolution equations for a convenient set of orbital elements, assuming that the force acts only within the orbital plane; this is the only restriction that we impose on the formalism, and we do not assume that the force must be small. As an application of our method, we analyze the relative motion of two massive bodies, assuming that one body is much smaller than the other. Using the hybrid Schwarzschild/post-Newtonian equations of motion formulated by Kidder, Will, and Wiseman, we treat the unperturbed motion as geodesic in a Schwarzschild spacetime whose mass parameter is equal to the system's total mass. The force then consists of terms that depend on the system's reduced mass. We highlight the importance of conservative terms in this force, which cause significant long-term changes in the time-dependence and phase of the relative orbit. From our results we infer some general limitations of the radiative approximation to the gravitational self-force, which uses only the dissipative terms in the force.Comment: 18 pages, 6 figures, final version to be published in Physical Review

    Self force in 2+1 electrodynamics

    Full text link
    The radiation reaction problem for an electric charge moving in flat space-time of three dimensions is discussed. The divergences stemming from the pointness of the particle are studied. A consistent regularization procedure is proposed, which exploits the Poincar\'e invariance of the theory. Effective equation of motion of radiating charge in an external electromagnetic field is obtained via the consideration of energy-momentum and angular momentum conservation. This equation includes the effect of the particle's own field. The radiation reaction is determined by the Lorentz force of point-like charge acting upon itself plus a non-local term which provides finiteness of the self-action.Comment: 20 pages, 3 figure

    Can the post-Newtonian gravitational waveform of an inspiraling binary be improved by solving the energy balance equation numerically?

    Get PDF
    The detection of gravitational waves from inspiraling compact binaries using matched filtering depends crucially on the availability of accurate template waveforms. We determine whether the accuracy of the templates' phasing can be improved by solving the post-Newtonian energy balance equation numerically, rather than (as is normally done) analytically within the post-Newtonian perturbative expansion. By specializing to the limit of a small mass ratio, we find evidence that there is no gain in accuracy.Comment: 13 pages, RevTeX, 5 figures included via eps

    On the fate of singularities and horizons in higher derivative gravity

    Get PDF
    We study static spherically symmetric solutions of high derivative gravity theories, with 4, 6, 8 and even 10 derivatives. Except for isolated points in the space of theories with more than 4 derivatives, only solutions that are nonsingular near the origin are found. But these solutions cannot smooth out the Schwarzschild singularity without the appearance of a second horizon. This conundrum, and the possibility of singularities at finite r, leads us to study numerical solutions of theories truncated at four derivatives. Rather than two horizons we are led to the suggestion that the original horizon is replaced by a rapid nonsingular transition from weak to strong gravity. We also consider this possibility for the de Sitter horizon.Comment: 15 pages, 3 figures, improvements and references added, to appear in PR
    corecore