2,930 research outputs found

    Mirror Descent and Convex Optimization Problems With Non-Smooth Inequality Constraints

    Full text link
    We consider the problem of minimization of a convex function on a simple set with convex non-smooth inequality constraint and describe first-order methods to solve such problems in different situations: smooth or non-smooth objective function; convex or strongly convex objective and constraint; deterministic or randomized information about the objective and constraint. We hope that it is convenient for a reader to have all the methods for different settings in one place. Described methods are based on Mirror Descent algorithm and switching subgradient scheme. One of our focus is to propose, for the listed different settings, a Mirror Descent with adaptive stepsizes and adaptive stopping rule. This means that neither stepsize nor stopping rule require to know the Lipschitz constant of the objective or constraint. We also construct Mirror Descent for problems with objective function, which is not Lipschitz continuous, e.g. is a quadratic function. Besides that, we address the problem of recovering the solution of the dual problem

    On representations of the feasible set in convex optimization

    Full text link
    We consider the convex optimization problem min{f(x):gj(x)0,j=1,...,m}\min \{f(x) : g_j(x)\leq 0, j=1,...,m\} where ff is convex, the feasible set K is convex and Slater's condition holds, but the functions gjg_j are not necessarily convex. We show that for any representation of K that satisfies a mild nondegeneracy assumption, every minimizer is a Karush-Kuhn-Tucker (KKT) point and conversely every KKT point is a minimizer. That is, the KKT optimality conditions are necessary and sufficient as in convex programming where one assumes that the gjg_j are convex. So in convex optimization, and as far as one is concerned with KKT points, what really matters is the geometry of K and not so much its representation.Comment: to appear in Optimization Letter

    Synthesis of a PID-controller of a trim robust control system of an autonomous underwater vehicle

    Get PDF
    Autonomous underwater vehicles are often used for performing scientific, emergency or other types of missions under harsh conditions and environments, which can have non-stable, variable parameters. So, the problem of developing autonomous underwater vehicle motion control systems, capable of operating properly in random environments, is highly relevant. The paper is dedicated to the synthesis of a PID-controller of a trim robust control system, capable of keeping an underwater vehicle stable during a translation at different angles of attack. In order to synthesize the PID-controller, two problems were solved: a new method of synthesizing a robust controller was developed and a mathematical model of an underwater vehicle motion process was derived. The newly developed mathematical model structure is simpler than others due to acceptance of some of the system parameters as interval ones. The synthesis method is based on a system poles allocation approach and allows providing the necessary transient process quality in a considered system

    Fast Primal-Dual Gradient Method for Strongly Convex Minimization Problems with Linear Constraints

    Full text link
    In this paper we consider a class of optimization problems with a strongly convex objective function and the feasible set given by an intersection of a simple convex set with a set given by a number of linear equality and inequality constraints. A number of optimization problems in applications can be stated in this form, examples being the entropy-linear programming, the ridge regression, the elastic net, the regularized optimal transport, etc. We extend the Fast Gradient Method applied to the dual problem in order to make it primal-dual so that it allows not only to solve the dual problem, but also to construct nearly optimal and nearly feasible solution of the primal problem. We also prove a theorem about the convergence rate for the proposed algorithm in terms of the objective function and the linear constraints infeasibility.Comment: Submitted for DOOR 201

    Sums over Graphs and Integration over Discrete Groupoids

    Full text link
    We show that sums over graphs such as appear in the theory of Feynman diagrams can be seen as integrals over discrete groupoids. From this point of view, basic combinatorial formulas of the theory of Feynman diagrams can be interpreted as pull-back or push-forward formulas for integrals over suitable groupoids.Comment: 27 pages, 4 eps figures; LaTeX2e; uses Xy-Pic. Some ambiguities fixed, and several proofs simplifie

    Counting and computing regions of DD-decomposition: algebro-geometric approach

    Full text link
    New methods for DD-decomposition analysis are presented. They are based on topology of real algebraic varieties and computational real algebraic geometry. The estimate of number of root invariant regions for polynomial parametric families of polynomial and matrices is given. For the case of two parametric family more sharp estimate is proven. Theoretic results are supported by various numerical simulations that show higher precision of presented methods with respect to traditional ones. The presented methods are inherently global and could be applied for studying DD-decomposition for the space of parameters as a whole instead of some prescribed regions. For symbolic computations the Maple v.14 software and its package RegularChains are used.Comment: 16 pages, 8 figure

    Global stabilization of fixed points using predictive control

    Get PDF
    We analyze the global stability properties of some methods of predictive control. We particularly focus on the optimal control function introduced by de Sousa Vieira and Lichtenberg [Phys. Rev. E54, 1200 (1996)]. We rigorously prove that it is possible to use this method for the global stabilization of a discrete system xn+1=f(xn) into a positive equilibrium for a class of maps commonly used in population dynamics. Moreover, the controlledsystem is globally stable for all values of the control parameter for which it is locally asymptotically stable. Our study highlights the difficulty of obtaining global stability results for other methods of predictive control, where higher iterations of f are used in the control scheme.Ministerio de Ciencia e InnovaciónFondo Europeo de Desarrollo Regiona

    The Pure Virtual Braid Group Is Quadratic

    Full text link
    If an augmented algebra K over Q is filtered by powers of its augmentation ideal I, the associated graded algebra grK need not in general be quadratic: although it is generated in degree 1, its relations may not be generated by homogeneous relations of degree 2. In this paper we give a sufficient criterion (called the PVH Criterion) for grK to be quadratic. When K is the group algebra of a group G, quadraticity is known to be equivalent to the existence of a (not necessarily homomorphic) universal finite type invariant for G. Thus the PVH Criterion also implies the existence of such a universal finite type invariant for the group G. We apply the PVH Criterion to the group algebra of the pure virtual braid group (also known as the quasi-triangular group), and show that the corresponding associated graded algebra is quadratic, and hence that these groups have a (not necessarily homomorphic) universal finite type invariant.Comment: 53 pages, 15 figures. Some clarifications added and inaccuracies corrected, reflecting suggestions made by the referee of the published version of the pape
    corecore