1,423 research outputs found

    Reduction Operators of Linear Second-Order Parabolic Equations

    Full text link
    The reduction operators, i.e., the operators of nonclassical (conditional) symmetry, of (1+1)-dimensional second order linear parabolic partial differential equations and all the possible reductions of these equations to ordinary differential ones are exhaustively described. This problem proves to be equivalent, in some sense, to solving the initial equations. The ``no-go'' result is extended to the investigation of point transformations (admissible transformations, equivalence transformations, Lie symmetries) and Lie reductions of the determining equations for the nonclassical symmetries. Transformations linearizing the determining equations are obtained in the general case and under different additional constraints. A nontrivial example illustrating applications of reduction operators to finding exact solutions of equations from the class under consideration is presented. An observed connection between reduction operators and Darboux transformations is discussed.Comment: 31 pages, minor misprints are correcte

    Lie symmetry analysis and exact solutions of the quasi-geostrophic two-layer problem

    Full text link
    The quasi-geostrophic two-layer model is of superior interest in dynamic meteorology since it is one of the easiest ways to study baroclinic processes in geophysical fluid dynamics. The complete set of point symmetries of the two-layer equations is determined. An optimal set of one- and two-dimensional inequivalent subalgebras of the maximal Lie invariance algebra is constructed. On the basis of these subalgebras we exhaustively carry out group-invariant reduction and compute various classes of exact solutions. Where possible, reference to the physical meaning of the exact solutions is given. In particular, the well-known baroclinic Rossby wave solutions in the two-layer model are rediscovered.Comment: Extended version, 24 pages, 1 figur

    Computation of Invariants of Lie Algebras by Means of Moving Frames

    Full text link
    A new purely algebraic algorithm is presented for computation of invariants (generalized Casimir operators) of Lie algebras. It uses the Cartan's method of moving frames and the knowledge of the group of inner automorphisms of each Lie algebra. The algorithm is applied, in particular, to computation of invariants of real low-dimensional Lie algebras. A number of examples are calculated to illustrate its effectiveness and to make a comparison with the same cases in the literature. Bases of invariants of the real solvable Lie algebras up to dimension five, the real six-dimensional nilpotent Lie algebras and the real six-dimensional solvable Lie algebras with four-dimensional nilradicals are newly calculated and listed in tables.Comment: 17 pages, extended versio

    New results on group classification of nonlinear diffusion-convection equations

    Full text link
    Using a new method and additional (conditional and partial) equivalence transformations, we performed group classification in a class of variable coefficient (1+1)(1+1)-dimensional nonlinear diffusion-convection equations of the general form f(x)ut=(D(u)ux)x+K(u)ux.f(x)u_t=(D(u)u_x)_x+K(u)u_x. We obtain new interesting cases of such equations with the density ff localized in space, which have large invariance algebra. Exact solutions of these equations are constructed. We also consider the problem of investigation of the possible local trasformations for an arbitrary pair of equations from the class under consideration, i.e. of describing all the possible partial equivalence transformations in this class.Comment: LaTeX2e, 19 page

    Group Analysis of Variable Coefficient Diffusion-Convection Equations. I. Enhanced Group Classification

    Full text link
    We discuss the classical statement of group classification problem and some its extensions in the general case. After that, we carry out the complete extended group classification for a class of (1+1)-dimensional nonlinear diffusion--convection equations with coefficients depending on the space variable. At first, we construct the usual equivalence group and the extended one including transformations which are nonlocal with respect to arbitrary elements. The extended equivalence group has interesting structure since it contains a non-trivial subgroup of non-local gauge equivalence transformations. The complete group classification of the class under consideration is carried out with respect to the extended equivalence group and with respect to the set of all point transformations. Usage of extended equivalence and correct choice of gauges of arbitrary elements play the major role for simple and clear formulation of the final results. The set of admissible transformations of this class is preliminary investigated.Comment: 25 page

    Equivalence of conservation laws and equivalence of potential systems

    Full text link
    We study conservation laws and potential symmetries of (systems of) differential equations applying equivalence relations generated by point transformations between the equations. A Fokker-Planck equation and the Burgers equation are considered as examples. Using reducibility of them to the one-dimensional linear heat equation, we construct complete hierarchies of local and potential conservation laws for them and describe, in some sense, all their potential symmetries. Known results on the subject are interpreted in the proposed framework. This paper is an extended comment on the paper of J.-q. Mei and H.-q. Zhang [Internat. J. Theoret. Phys., 2006, in press].Comment: 10 page

    Potential Conservation Laws

    Full text link
    We prove that potential conservation laws have characteristics depending only on local variables if and only if they are induced by local conservation laws. Therefore, characteristics of pure potential conservation laws have to essentially depend on potential variables. This statement provides a significant generalization of results of the recent paper by Bluman, Cheviakov and Ivanova [J. Math. Phys., 2006, V.47, 113505]. Moreover, we present extensions to gauged potential systems, Abelian and general coverings and general foliated systems of differential equations. An example illustrating possible applications of proved statements is considered. A special version of the Hadamard lemma for fiber bundles and the notions of weighted jet spaces are proposed as new tools for the investigation of potential conservation laws.Comment: 36 pages, extended versio

    Anharmonic resonances with recursive delay feedback

    Full text link
    We consider application of the multiple time delayed feedback for control of anharmonic (nonlinear) oscillators subject to noise. In contrast to the case of a single delay feedback, the multiple one exhibits resonances between feedback and nonlinear harmonics, leading to a resonantly strong or weak oscillation coherence even for a small anharmonicity. Analytical results are confirmed numerically for van der Pol and van der Pol-Duffing oscillators. Highlights: > We construct general theory of noisy limit-cycle oscillators with linear feedback. > We focus on coherence and "reliability" of oscillators. > For recursive delay feedback control the theory shows importance of anharmonicity. > Anharmonic resonances are studied both numerically and analytically.Comment: 6 pages, 4 figures, +Maple program and its pdf-print, submitted to Physics Letters

    Enhanced Group Analysis and Exact Solutions of Variable Coefficient Semilinear Diffusion Equations with a Power Source

    Full text link
    A new approach to group classification problems and more general investigations on transformational properties of classes of differential equations is proposed. It is based on mappings between classes of differential equations, generated by families of point transformations. A class of variable coefficient (1+1)-dimensional semilinear reaction-diffusion equations of the general form f(x)ut=(g(x)ux)x+h(x)umf(x)u_t=(g(x)u_x)_x+h(x)u^m (m0,1m\ne0,1) is studied from the symmetry point of view in the framework of the approach proposed. The singular subclass of the equations with m=2m=2 is singled out. The group classifications of the entire class, the singular subclass and their images are performed with respect to both the corresponding (generalized extended) equivalence groups and all point transformations. The set of admissible transformations of the imaged class is exhaustively described in the general case m2m\ne2. The procedure of classification of nonclassical symmetries, which involves mappings between classes of differential equations, is discussed. Wide families of new exact solutions are also constructed for equations from the classes under consideration by the classical method of Lie reductions and by generation of new solutions from known ones for other equations with point transformations of different kinds (such as additional equivalence transformations and mappings between classes of equations).Comment: 40 pages, this is version published in Acta Applicanda Mathematica
    corecore