455 research outputs found

    A view from inside iron-based superconductors

    Full text link
    Muon spin spectroscopy is one of the most powerful tools to investigate the microscopic properties of superconductors. In this manuscript, an overview on some of the main achievements obtained by this technique in the iron-based superconductors (IBS) are presented. It is shown how the muons allow to probe the whole phase diagram of IBS, from the magnetic to the superconducting phase, and their sensitivity to unravel the modifications of the magnetic and the superconducting order parameters, as the phase diagram is spanned either by charge doping, by an external pressure or by introducing magnetic and non-magnetic impurities. Moreover, it is highlighted that the muons are unique probes for the study of the nanoscopic coexistence between magnetism and superconductivity taking place at the crossover between the two ground-states.Comment: 28 pages, 18 figure

    Coupling between 4f and itinerant electrons in SmFeAsO1-xFx (0.15 < x < 0.2) superconductors: an NMR study

    Full text link
    19^{19}F NMR measurements in SmFeAsO1x_{1-x}Fx_x, for 0.15x0.20.15\leq x\leq 0.2, are presented. The nuclear spin-lattice relaxation rate 1/T11/T_1 increases upon cooling with a trend analogous to the one already observed in CeCu5.2_{5.2}Au0.8_{0.8}, a quasi two-dimensional heavy-fermion intermetallic compound with an antiferromagnetic ground-state. In particular, the behaviour of the relaxation rate either in SmFeAsO1x_{1-x}Fx_x or in CeCu5.2_{5.2}Au0.8_{0.8} can be described in the framework of the self-consistent renormalization theory for weakly itinerant electron systems. Remarkably, no effect of the superconducting transition on 19^{19}F 1/T11/T_1 is detected, a phenomenon which can hardly be explained within a single band model.Comment: 4 figure

    Superconducting phase fluctuations in SmFeAsO0.8_{0.8}F0.2_{0.2} from diamagnetism at low magnetic field above TcT_{c}

    Full text link
    Superconducting fluctuations (SF) in SmFeAsO0.8_{0.8}F0.2_{0.2} (characterized by superconducting transition temperature Tc52.3T_{c} \simeq 52.3 K) are investigated by means of isothermal high-resolution dc magnetization measurements. The diamagnetic response to magnetic fields up to 1 T above TcT_{c} is similar to what previously reported for underdoped cuprate superconductors and it can be justified in terms of metastable superconducting islands at non-zero order parameter lacking of long-range coherence because of strong phase fluctuations. In the high-field regime (H1.5H \gtrsim 1.5 T) scaling arguments predicted on the basis of the Ginzburg-Landau theory of conventional SF are found to be applicable, at variance with what observed in the low-field regime. This fact enlightens that two different phenomena are simultaneously present in the fluctuating diamagnetism, namely the phase SF of novel character and the conventional SF. High magnetic fields (1.5 T HHc2\lesssim H \ll H_{c2}) are found to suppress the former while leaving unaltered the latter one.Comment: 7 pages, 5 figure

    Dilution effects in Ho2x_{2-x}Yx_xSn2_2O7_7: from the Spin Ice to the single-ion magnet

    Full text link
    A study of the modifications of the magnetic properties of Ho2x_{2-x}Yx_xSn2_2O7_7 upon varying the concentration of diamagnetic Y3+^{3+} ions is presented. Magnetization and specific heat measurements show that the Spin Ice ground-state is only weakly affected by doping for x0.3x\leq 0.3, even if non-negligible changes in the crystal field at Ho3+^{3+} occur. In this low doping range μ\muSR relaxation measurements evidence a modification in the low-temperature dynamics with respect to the one observed in the pure Spin Ice. For x2x\to 2, or at high temperature, the dynamics involve fluctuations among Ho3+^{3+} crystal field levels which give rise to a characteristic peak in 119^{119}Sn nuclear spin-lattice relaxation rate. In this doping limit also the changes in Ho3+^{3+} magnetic moment suggest a variation of the crystal field parameters.Comment: 4 pages, 5 figures, proceedings of HFM2008 Conferenc

    Evidence for impurity-induced frustration in La2CuO4

    Full text link
    Zero-field muon spin rotation and magnetization measurements were performed in La2Cu{1-x}MxO4, for 0<x< 0.12, where Cu2+ is replaced either by M=Zn2+ or by M=Mg2+ spinless impurity. It is shown that while the doping dependence of the sublattice magnetization (M(x)) is nearly the same for both compounds, the N\'eel temperature (T_N(x)) decreases unambiguously more rapidly in the Zn-doped compound. This difference, not taken into account within a simple dilution model, is associated with the frustration induced by the Zn2+ impurity onto the Cu2+ antiferromagnetic lattice. In fact, from T_N(x) and M(x) the spin stiffness is derived and found to be reduced by Zn doping more significantly than expected within a dilution model. The effect of the structural modifications induced by doping on the exchange coupling is also discussed.Comment: 4 pages, 4 figure

    AC susceptibility investigation of vortex dynamics in nearly-optimally doped REFeAsO1x_{1-x}Fx_{x} superconductors (RE = La, Ce, Sm)

    Full text link
    Ac susceptibility and static magnetization measurements were performed in the nearly-optimally doped LaFeAsO0.9_{0.9}F0.1_{0.1} and CeFeAsO0.92_{0.92}F0.08_{0.08} superconductors, complementing earlier results on SmFeAsO0.8_{0.8}F0.2_{0.2} [Phys. Rev. {\bf B 83}, 174514 (2011)]. The magnetic field -- temperature phase diagram of the mixed superconducting state is drawn for the three materials, displaying a sizeable reduction of the liquid phase upon increasing TcT_{c} in the range of applied fields (H5H \leq 5 T). This result indicates that SmFeAsO0.8_{0.8}F0.2_{0.2} is the most interesting compound among the investigated ones in view of possible applications. The field-dependence of the intra-grain depinning energy U0U_{0} exhibits a common trend for all the samples with a typical crossover field value (2500 Oe Hcr5000\lesssim H_{cr} \lesssim 5000 Oe) separating regions where single and collective depinning processes are at work. Analysis of the data in terms of a simple two-fluid picture for slightly anisotropic materials allows to estimate the zero-temperature penetration depth λab(0)\lambda_{ab}(0) and the anisotropy parameter γ\gamma for the three materials. Finally, a sizeable suppression of the superfluid density is deduced in a s±s^{\pm} two-gap scenario

    Correlated trends of coexisting magnetism and superconductivity in optimally electron-doped oxy-pnictides

    Full text link
    We report on the recovery of the short-range static magnetic order and on the concomitant degradation of the superconducting state in optimally F-doped SmFe_(1-x)Ru_(x)AsO_0.85F_0.15 for 0.1< x<0.6. The two reduced order parameters coexist within nanometer-size domains in the FeAs layers and finally disappear around a common critical threshold x_c=0.6. Superconductivity and magnetism are shown to be closely related to two distinct well-defined local electronic environments of the FeAs layers. The two transition temperatures, controlled by the isoelectronic and diamagnetic Ru substitution, scale with the volume fraction of the corresponding environments. This fact indicates that superconductivity is assisted by magnetic fluctuations, which are frozen whenever a short-range static order appears, and totally vanish above the magnetic dilution threshold x_c.Comment: Approved for publication in Phys. Rev. Letter

    The poisoning effect of Mn in LaFe(1-x)Mn(x)AsO(0.89)F(0.11): unveiling a quantum critical point in the phase diagram of iron-based superconductors

    Full text link
    A superconducting-to-magnetic transition is reported for LaFe1x_{1-x}Mnx_xAsO0.89_{0.89}F0.11_{0.11} where a per thousand amount of Mn impurities is dispersed. By employing local spectroscopic techniques like muon spin rotation (muSR) and nuclear quadrupole resonance (NQR) on compounds with Mn contents ranging from x=0.025% to x=0.75%, we find that the electronic properties are extremely sensitive to the Mn impurities. In fact, a small amount of Mn as low as 0.2% suppresses superconductivity completely. Static magnetism, involving the FeAs planes, is observed to arise for x > 0.1% and becomes further enhanced upon increasing Mn substitution. Also a progressive increase of low energy spin fluctuations, leading to an enhancement of the NQR spin-lattice relaxation rate 1/T1, is observed upon Mn substitution. The analysis of 1/T1 for the sample closest to the the crossover between superconductivity and magnetism (x = 0.2%) points towards the presence of an antiferromagnetic quantum critical point around that doping level.Comment: 11 pages, 10 figure

    Tuning of competing magnetic and superconducting phase volumes in LaFeAsO$_0.945F_0.055 by hydrostatic pressure

    Full text link
    The interplay between magnetism and superconductivity in LaFeAsO_0.945F_0.055 was studied as a function of hydrostatic pressure up to p~2.4GPa by means of muon-spin rotation (\muSR) and magnetization measurements. The application of pressure leads to a substantial decrease of the magnetic ordering temperature T_N and a reduction of the magnetic phase volume and, at the same time, to a strong increase of the superconducting transition temperature T_c and the diamagnetic susceptibility. From the volume sensitive \muSR measurements it can be concluded that the superconducting and the magnetic areas which coexist in the same sample are inclined towards spatial separation and compete for phase volume as a function of pressure.Comment: 4 pages, 4 figure

    Nanoscopic coexistence of magnetic and superconducting states within the FeAs layers of CeFeAsO1-xFx

    Full text link
    We report on the coexistence of magnetic and superconducting states in CeFeAsO1-xFx for x=0.06(2), characterized by transition temperatures T_m=30 K and T_c=18 K, respectively. Zero and transverse field muon-spin relaxation measurements show that below 10 K the two phases coexist within a nanoscopic scale over a large volume fraction. This result clarifies the nature of the magnetic-to-superconducting transition in the CeFeAsO1-xFx phase diagram, by ruling out the presence of a quantum critical point which was suggested by earlier studies.Comment: 4 pages, 3 figs, accepted for publication as PRB Rapid com
    corecore