48 research outputs found

    <i>SoxY</i> gene family expansion underpins adaptation to diverse hosts and environments in symbiotic sulfide oxidizers

    Get PDF
    Sulfur-oxidizing bacteria (SOB) have developed distinct ecological strategies to obtain reduced sulfur compounds for growth. These range from specialists that can only use a limited range of reduced sulfur compounds to generalists that can use many different forms as electron donors. Forming intimate symbioses with animal hosts is another highly successful ecological strategy for SOB, as animals, through their behavior and physiology, can enable access to sulfur compounds. Symbioses have evolved multiple times in a range of animal hosts and from several lineages of SOB. They have successfully colonized a wide range of habitats, from seagrass beds to hydrothermal vents, with varying availability of symbiont energy sources. Our extensive analyses of sulfur transformation pathways in 234 genomes of symbiotic and free-living SOB revealed widespread conservation in metabolic pathways for sulfur oxidation in symbionts from different host species and environments, raising the question of how they have adapted to such a wide range of distinct habitats. We discovered a gene family expansion of soxY in these genomes, with up to five distinct copies per genome. Symbionts harboring only the "canonical" soxY were typically ecological "specialists" that are associated with specific host subfamilies or environments (e.g., hydrothermal vents, mangroves). Conversely, symbionts with multiple divergent soxY genes formed versatile associations across diverse hosts in various marine environments. We hypothesize that expansion and diversification of the soxY gene family could be one genomic mechanism supporting the metabolic flexibility of symbiotic SOB enabling them and their hosts to thrive in a range of different and dynamic environments

    Myocardial dysfunction in acute traumatic brain injury relieved by surgical decompression.

    Get PDF
    Traumatic brain injury (TBI) is a major public health issue and is a leading cause of death in North America. After a primary TBI, secondary brain insults can predispose patients to a worse outcome. One of the earliest secondary insults encountered during the perioperative period is hypotension, which has been directly linked to both mortality and poor disposition after TBI. Despite this, it has been shown that hypotension commonly occurs during surgery for TBI. We present a case of intraoperative hypotension during surgery for TBI, where the use of transthoracic echocardiography had significant diagnostic and therapeutic implications for the management of our patient. We then discuss the issue of cardiac dysfunction after brain injury and the implications that echocardiography may have in the management of this vulnerable patient population

    A Review of Factors Influencing the Seagrass-Sea Cucumber Association in Tropical Seagrass Meadows

    No full text
    In the tropical ecosystem, sea cucumbers are associated with seagrass meadows in various ways, often forming a network of ecological interactions. From this myriad of interactions, the trophic relationship between the seagrasses and sea cucumbers has received recent attention with the advent of analytical techniques. However, little is understood about the exact mechanism by which seagrasses are sustaining the sea cucumber populations in the food chain, considering the high number of refractory components in seagrasses and the lack of digestive enzymes among sea cucumbers. This manuscript aims to review existing concepts in ecology concerning the association between tropical seagrasses and sea cucumbers to provide directions for research and management of this vital resource. We searched literature from electronic databases and identified key concepts concerning sea cucumber and seagrass communities based on geographic distribution, nutrient compositions, seagrass decomposition process, and trophic enrichments in the food chain. A conceptual model was then developed detailing the factors influencing the association between the seagrass meadows and sea cucumbers. Despite the limited published information on the seagrass–sea cucumber association, a synthesis of the current understanding of this topic is provided to address the declining sea cucumber populations in the tropical seagrass meadows. We suggest that the successful restoration of sea cucumber fisheries requires a thorough understanding of the seagrass decomposition process, which is vital to the diet of sea cucumbers.</jats:p
    corecore