2,501 research outputs found
Dissociation mechanism for solid-phase epitaxy of silicon in the Si <100>/Pd2Si/Si (amorphous) system
Solid-phase epitaxial growth (SPEG) of silicon was investigated by a tracer technique using radioactive 31Si formed by neutron activation in a nuclear reactor. After depositing Pd and Si onto activated single-crystal silicon substrates, Pd2Si was formed with about equal amounts of radioactive and nonradioactive Si during heating at 400 °C for 5 min. After an 1-sec annealing stage (450-->500 °C in 1 h) this silicide layer, which moves to the top of the sample during SPEG, is etched off with aqua regia. From the absence of radioactive 31Si in the etch, it is concluded that SPEG takes place by a dissociation mechanism rather than by diffusion
Radioactive silicon as a marker in thin-film silicide formation
A new technique using radioactive 31Si (half-life =2.62 h), formed in a nuclear reactor, as a marker for studying silicide formation is described. A few hundred angstroms of radioactive silicon is first deposited onto the silicon substrate, followed immediately by the deposition of a few thousand angstroms of the metal. When the sample is heated, a silicide is first formed with the radioactive silicon. Upon further silicide formation, this band of radioactive silicide can move to the surface of the sample if silicide formation takes place by diffusion of the metal or by silicon substitutional and/or vacancy diffusion. However, if the band of radioactive silicide stays at the silicon substrate interface it can be concluded that silicon diffuses by interstitial and/or grain-boundary diffusion. This technique was tested by studying the formation of Ni2Si on silicon at 330 °C. From a combination of ion-beam sputtering, radioactivity measurement, and Rutherford backscattering it is found that the band of radioactive silicide moves to the surface of the sample during silicide formation. From these results, implanted noble-gas marker studies and the rate dependence of Ni2Si growth on grain size, it is concluded that nickel is the dominant diffusing species during Ni2Si formation, and that it moves by grain-boundary diffusion
Critical Collapse of the Massless Scalar Field in Axisymmetry
We present results from a numerical study of critical gravitational collapse
of axisymmetric distributions of massless scalar field energy. We find
threshold behavior that can be described by the spherically symmetric critical
solution with axisymmetric perturbations. However, we see indications of a
growing, non-spherical mode about the spherically symmetric critical solution.
The effect of this instability is that the small asymmetry present in what
would otherwise be a spherically symmetric self-similar solution grows. This
growth continues until a bifurcation occurs and two distinct regions form on
the axis, each resembling the spherically symmetric self-similar solution. The
existence of a non-spherical unstable mode is in conflict with previous
perturbative results, and we therefore discuss whether such a mode exists in
the continuum limit, or whether we are instead seeing a marginally stable mode
that is rendered unstable by numerical approximation.Comment: 11 pages, 8 figure
Event Horizon Deformations in Extreme Mass-Ratio Black Hole Mergers
We study the geometry of the event horizon of a spacetime in which a small
compact object plunges into a large Schwarzschild black hole. We first use the
Regge-Wheeler and Zerilli formalisms to calculate the metric perturbations
induced by this small compact object, then find the new event horizon by
propagating null geodesics near the unperturbed horizon. A caustic is shown to
exist before the merger. Focusing on the geometry near the caustic, we show
that it is determined predominantly by large-l perturbations, which in turn
have simple asymptotic forms near the point at which the particle plunges into
the horizon. It is therefore possible to obtain an analytic characterization of
the geometry that is independent of the details of the plunge. We compute the
invariant length of the caustic. We further show that among the leading-order
horizon area increase, half arises from generators that enter the horizon
through the caustic, and the rest arises from area increase near the caustic,
induced by the gravitational field of the compact object.Comment: 23 pages, 14 figure
Two-dimensional quantum black holes: Numerical methods
We present details of a new numerical code designed to study the formation
and evaporation of 2-dimensional black holes within the CGHS model. We explain
several elements of the scheme that are crucial to resolve the late-time
behavior of the spacetime, including regularization of the field variables,
compactification of the coordinates, the algebraic form of the discretized
equations of motion, and the use of a modified Richardson extrapolation scheme
to achieve high-order convergence. Physical interpretation of our results will
be discussed in detail elsewhere
Universality and properties of neutron star type I critical collapses
We study the neutron star axisymmetric critical solution previously found in
the numerical studies of neutron star mergers. Using neutron star-like initial
data and performing similar merger simulations, we demonstrate that the
solution is indeed a semi-attractor on the threshold plane separating the basin
of a neutron star and the basin of a black hole in the solution space of the
Einstein equations. In order to explore the extent of the attraction basin of
the neutron star semiattractor, we construct initial data phase spaces for
these neutron star-like initial data. From these phase spaces, we also observe
several interesting dynamical scenarios where the merged object is supported
from prompt collapse. The properties of the critical index of the solution, in
particular, its dependence on conserved quantities, are then studied. From the
study, it is found that a family of neutron star semi-attractors exist that can
be classified by both their rest masses and ADM masses.Comment: 13 pages, 12 figures, 1 new reference adde
Accuracy and effectualness of closed-form, frequency-domain waveforms for non-spinning black hole binaries
The coalescences of binary black hole (BBH) systems, here taken to be
non-spinning, are among the most promising sources for gravitational wave (GW)
ground-based detectors, such as LIGO and Virgo. To detect the GW signals
emitted by BBHs, and measure the parameters of the source, one needs to have in
hand a bank of GW templates that are both effectual (for detection), and
accurate (for measurement). We study the effectualness and the accuracy of the
two types of parametrized banks of templates that are directly defined in the
frequency-domain by means of closed-form expressions, namely 'post-Newtonian'
(PN) and 'phenomenological' models. In absence of knowledge of the exact
waveforms, our study assumes as fiducial, target waveforms the ones generated
by the most accurate version of the effective one body (EOB) formalism. We find
that, for initial GW detectors the use, at each point of parameter space, of
the best closed-form template (among PN and phenomenological models) leads to
an effectualness >97% over the entire mass range and >99% in an important
fraction of parameter space; however, when considering advanced detectors, both
of the closed-form frequency-domain models fail to be effectual enough in
significant domains of the two-dimensional [total mass and mass ratio]
parameter space. Moreover, we find that, both for initial and advanced
detectors, the two closed-form frequency-domain models fail to satisfy the
minimal required accuracy standard in a very large domain of the
two-dimensional parameter space. In addition, a side result of our study is the
determination, as a function of the mass ratio, of the maximum frequency at
which a frequency-domain PN waveform can be 'joined' onto a NR-calibrated EOB
waveform without undue loss of accuracy.Comment: 29 pages, 8 figures, 1 table. Accepted for publication in Phys. Rev.
Introductory lectures on the Effective One Body formalism
The Effective One Body (EOB) formalism is an analytical approach which aims
at providing an accurate description of the motion and radiation of coalescing
binary black holes. We present a brief review of the basic elements of this
approach.Comment: 22 pages, 3 figures, lectures given at the Second ICRANet
Stueckelberg Workshop on Relativistic Field Theories (Pescara, Italy,
September 3-8, 2007); to be published in the International Journal of Modern
Physics
Head-on collisions of unequal mass black holes in D=5 dimensions
We study head-on collisions of unequal mass black hole binaries in D=5
space-time dimensions, with mass ratios between 1:1 and 1:4. Information about
gravitational radiation is extracted by using the Kodama-Ishibashi
gauge-invariant formalism and details of the apparent horizon of the final
black hole. For the first time, we present waveforms, total integrated energy
and momentum for this process. Our results show surprisingly good agreement,
within 5% or less, with those extrapolated from linearized, point-particle
calculations. Our results also show that consistency with the area theorem
bound requires that the same process in a large number of spacetime dimensions
must display new features.Comment: 10 pages, 5 figures, RevTex4. v2: Published versio
- …
