1,851 research outputs found

    Selectivity of cyclodextrins as a parameter to tune the formation of pseudorotaxanes and micelles supramolecular assemblies. A systematic SANS study

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We studied the formation of polypseudorotaxanes formed with cyclodextrins (CDs) threading a copolymer chain that forms self-assembled structures in water. The size of the CD cavity was chosen such that it is block selective with respect to the formation of inclusion complexes and therefore in terms of altering the structure of the copolymer self-assemblies in a systematic fashion. Small angle neutron scattering (SANS) experiments provide a direct and clear picture of the shape and interactions of the copolymer micelles in the absence and the presence of various CDs. Moreover, the dissolution of copolymer micelles by CD addition was clearly described by a simple model which provides a tool for quantitative predictions. This study suggests the possibility of designing materials with tunable aggregation abilities in water, where the extent of aggregate formation is determined by the amount and type of added cyclodextrin.EC/FP7/226507/EU/Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy/NMI

    Long-lived Giant Number Fluctuations in a Swarming Granular Nematic

    Full text link
    Coherently moving flocks of birds, beasts or bacteria are examples of living matter with spontaneous orientational order. How do these systems differ from thermal equilibrium systems with such liquid-crystalline order? Working with a fluidized monolayer of macroscopic rods in the nematic liquid crystalline phase, we find giant number fluctuations consistent with a standard deviation growing linearly with the mean, in contrast to any situation where the Central Limit Theorem applies. These fluctuations are long-lived, decaying only as a logarithmic function of time. This shows that flocking, coherent motion and large-scale inhomogeneity can appear in a system in which particles do not communicate except by contact.Comment: This is the author's version of the work. It is posted here by permission of the AAAS. The definitive version is to appear in SCIENC

    Forcing and Velocity Correlations in a Vibrated Granular Monolayer

    Full text link
    The role of forcing on the dynamics of a vertically shaken granular monolayer is investigated. Using a flat plate, surprising negative velocity correlations are measured. A mechanism for this anti-correlation is proposed with support from both experimental results and molecular dynamics simulations. Using a rough plate, velocity correlations are positive, and the velocity distribution evolves from a gaussian at very low densities to a broader distribution at high densities. These results are interpreted as a balance between stochastic forcing, interparticle collisions, and friction with the plate.Comment: 4 pages, 5 figure

    Finite-dimensional representations of twisted hyper loop algebras

    Full text link
    We investigate the category of finite-dimensional representations of twisted hyper loop algebras, i.e., the hyperalgebras associated to twisted loop algebras over finite-dimensional simple Lie algebras. The main results are the classification of the irreducible modules, the definition of the universal highest-weight modules, called the Weyl modules, and, under a certain mild restriction on the characteristic of the ground field, a proof that the simple modules and the Weyl modules for the twisted hyper loop algebras are isomorphic to appropriate simple and Weyl modules for the non-twisted hyper loop algebras, respectively, via restriction of the action

    The role of fingerprints in the coding of tactile information probed with a biomimetic sensor

    Get PDF
    In humans, the tactile perception of fine textures (spatial scale <200 micrometers) is mediated by skin vibrations generated as the finger scans the surface. To establish the relationship between texture characteristics and subcutaneous vibrations, a biomimetic tactile sensor has been designed whose dimensions match those of the fingertip. When the sensor surface is patterned with parallel ridges mimicking the fingerprints, the spectrum of vibrations elicited by randomly textured substrates is dominated by one frequency set by the ratio of the scanning speed to the interridge distance. For human touch, this frequency falls within the optimal range of sensitivity of Pacinian afferents, which mediate the coding of fine textures. Thus, fingerprints may perform spectral selection and amplification of tactile information that facilitate its processing by specific mechanoreceptors.Comment: 25 pages, 11 figures, article + supporting materia

    Non-equilibrium two-phase coexistence in a confined granular layer

    Full text link
    We report the observation of the homogenous nucleation of crystals in a dense layer of steel spheres confined between two horizontal plates vibrated vertically. Above a critical vibration amplitude, two-layer crystals with square symmetry were found to coexist in steady state with a surrounding granular liquid. By analogy to equilibrium hard sphere systems, the phase behavior can be explained through entropy maximization. However, dramatic non-equilibrium effects are present, including a significant difference in the granular temperatures of the two phases.Comment: 4 pages, 3 figures, RevTex4 forma

    Crucial role of sidewalls in velocity distributions in quasi-2D granular gases

    Get PDF
    Our experiments and three-dimensional molecular dynamics simulations of particles confined to a vertical monolayer by closely spaced frictional walls (sidewalls) yield velocity distributions with non-Gaussian tails and a peak near zero velocity. Simulations with frictionless sidewalls are not peaked. Thus interactions between particles and their container are an important determinant of the shape of the distribution and should be considered when evaluating experiments on a tightly constrained monolayer of particles.Comment: 4 pages, 4 figures, Added reference, model explanation charified, other minor change

    The dynamics of thin vibrated granular layers

    Full text link
    We describe a series of experiments and computer simulations on vibrated granular media in a geometry chosen to eliminate gravitationally induced settling. The system consists of a collection of identical spherical particles on a horizontal plate vibrating vertically, with or without a confining lid. Previously reported results are reviewed, including the observation of homogeneous, disordered liquid-like states, an instability to a `collapse' of motionless spheres on a perfect hexagonal lattice, and a fluctuating, hexagonally ordered state. In the presence of a confining lid we see a variety of solid phases at high densities and relatively high vibration amplitudes, several of which are reported for the first time in this article. The phase behavior of the system is closely related to that observed in confined hard-sphere colloidal suspensions in equilibrium, but with modifications due to the effects of the forcing and dissipation. We also review measurements of velocity distributions, which range from Maxwellian to strongly non-Maxwellian depending on the experimental parameter values. We describe measurements of spatial velocity correlations that show a clear dependence on the mechanism of energy injection. We also report new measurements of the velocity autocorrelation function in the granular layer and show that increased inelasticity leads to enhanced particle self-diffusion.Comment: 11 pages, 7 figure

    Large Deformation Effects in the N = Z 44Ti Compound Nucleus

    Full text link
    The N = Z 44Ti* nucleus has been populated in Fusion Evaporation process at very high excitation energies and angular momenta using two entrance channels with different mass-asymmetry. The deformation effects in the rapidly rotating nuclei have been investigated through the energy distribution of the alpha-particle combined to statistical-model calculations. In the case of low-multiplicity events, the ratio between first particle emitted has been measured and shows significant disagreement with the predictions of the statistical-model. This may explain The large discrepancies observed in proton energy spectra measured in previous experiments performed in the same mass region.Comment: Proceeding of the 10th International Conference on Nuclear Reaction Mechanisms, Varenna Italy, June 9-13 2003. 10 pages, 6 figures, 1 tabl
    corecore