1,284 research outputs found
Information Content in Data Sets for a Nucleated-Polymerization Model
We illustrate the use of tools (asymptotic theories of standard error
quantification using appropriate statistical models, bootstrapping, model
comparison techniques) in addition to sensitivity that may be employed to
determine the information content in data sets. We do this in the context of
recent models [23] for nucleated polymerization in proteins, about which very
little is known regarding the underlying mechanisms; thus the methodology we
develop here may be of great help to experimentalists
On the decay of turbulence in plane Couette flow
The decay of turbulent and laminar oblique bands in the lower transitional
range of plane Couette flow is studied by means of direct numerical simulations
of the Navier--Stokes equations. We consider systems that are extended enough
for several bands to exist, thanks to mild wall-normal under-resolution
considered as a consistent and well-validated modelling strategy. We point out
a two-stage process involving the rupture of a band followed by a slow
regression of the fragments left. Previous approaches to turbulence decay in
wall-bounded flows making use of the chaotic transient paradigm are
reinterpreted within a spatiotemporal perspective in terms of large deviations
of an underlying stochastic process.Comment: ETC13 Conference Proceedings, 6 pages, 5 figure
Modulating the phase transition temperature of giant magnetocaloric thin films by ion irradiation
Magnetic refrigeration based on the magnetocaloric effect at room temperature
is one of the most attractive alternative to the current gas
compression/expansion method routinely employed. Nevertheless, in giant
magnetocaloric materials, optimal refrigeration is restricted to the narrow
temperature window of the phase transition (Tc). In this work, we present the
possibility of varying this transition temperature into a same giant
magnetocaloric material by ion irradiation. We demonstrate that the transition
temperature of iron rhodium thin films can be tuned by the bombardment of ions
of Ne 5+ with varying fluences up to 10 14 ions cm --2 , leading to optimal
refrigeration over a large 270--380 K temperature window. The Tc modification
is found to be due to the ion-induced disorder and to the density of new
point-like defects. The variation of the phase transition temperature with the
number of incident ions opens new perspectives in the conception of devices
using giant magnetocaloric materials
Investigation of slow collisions for (quasi) symmetric heavy systems: what can be extracted from high resolution X-ray spectra
We present a new experiment on (quasi) symmetric collision systems at
low-velocity, namely Ar ions ( a.u.) on gaseous Ar and N
targets, using low- and high-resolution X-ray spectroscopy. Thanks to an
accurate efficiency calibration of the spectrometers, we extract absolute X-ray
emission cross sections combining low-resolution X-ray spectroscopy and a
complete determination of the ion beam - gas jet target overlap. Values with
improved uncertainty are found in agreement with previous results
\cite{Tawara2001}. Resolving the whole He-like Ar Lyman series from
to 10 with our crystal spectrometer enables to determine precisely the
distribution of the electron capture probability and the
preferential level of the selective single-electron capture.
Evaluation of cross sections for this process as well as for the contribution
of multiple-capture is carried out. Their sensitivity to the
-distribution of levels populated by single-electron capture is
clearly demonstrated, providing a stringent benchmark for theories. In
addition, the hardness ratio is extracted and the influence of the decay of the
metastable state on this ratio is discussed
Suppression of the thermal hysteresis in magnetocaloric MnAs thin film by highly charged ion bombardment
We present the investigation on the modifications of structural and magnetic
properties of MnAs thin film epitaxially grown on GaAs induced by slow highly
charged ions bombardment under well-controlled conditions. The ion-induced
defects facilitate the nucleation of one phase with respect to the other in the
first-order magneto-structural MnAs transition with a consequent suppression of
thermal hysteresis without any significant perturbation on the other structural
and magnetic properties. In particular, the irradiated film keeps the giant
magnetocaloric effect at room temperature opening new perspective on magnetic
refrigeration technology for everyday use
Transient growth in Taylor-Couette flow
Transient growth due to non-normality is investigated for the Taylor-Couette
problem with counter-rotating cylinders as a function of aspect ratio eta and
Reynolds number Re. For all Re < 500, transient growth is enhanced by
curvature, i.e. is greater for eta < 1 than for eta = 1, the plane Couette
limit. For fixed Re < 130 it is found that the greatest transient growth is
achieved for eta between the Taylor-Couette linear stability boundary, if it
exists, and one, while for Re > 130 the greatest transient growth is achieved
for eta on the linear stability boundary. Transient growth is shown to be
approximately 20% higher near the linear stability boundary at Re = 310, eta =
0.986 than at Re = 310, eta = 1, near the threshold observed for transition in
plane Couette flow. The energy in the optimal inputs is primarily meridional;
that in the optimal outputs is primarily azimuthal. Pseudospectra are
calculated for two contrasting cases. For large curvature, eta = 0.5, the
pseudospectra adhere more closely to the spectrum than in a narrow gap case,
eta = 0.99
Characterization and Modeling of DHBT in InP/GaAsSb Technology for the Design and Fabrication of a Ka Band MMIC Oscillator
This paper presents the design of an MMIC oscillator operating at a 38 GHz frequency. This circuit was fabricated by the III–V Lab with the new InP/GaAsSb Double Heterojunction Bipolar Transistor (DHBT) submicronic technology (We=700 nm). The transistor used in the circuit has a 15 μm long two-finger emitter. This paper describes the complete nonlinear modeling of this DHBT, including the cyclostationary modeling of its low frequency (LF) noise sources. The specific interest of the methodology used to design this oscillator resides in being able to choose a nonlinear operating condition of the transistor from an analysis in amplifier mode. The oscillator simulation and measurement results are compared. A 38 GHz oscillation frequency with 8.6 dBm output power and a phase noise of −80 dBc/Hz at 100 KHz offset from carrier have been measured
Nanoscale structuring of tungsten tip yields most coherent electron point-source
This report demonstrates the most spatially-coherent electron source ever
reported. A coherence angle of 14.3 +/- 0.5 degrees was measured, indicating a
virtual source size of 1.7 +/-0.6 Angstrom using an extraction voltage of 89.5
V. The nanotips under study were crafted using a spatially-confined,
field-assisted nitrogen etch which removes material from the periphery of the
tip apex resulting in a sharp, tungsten-nitride stabilized, high-aspect ratio
source. The coherence properties are deduced from holographic measurements in a
low-energy electron point source microscope with a carbon nanotube bundle as
sample. Using the virtual source size and emission current the brightness
normalized to 100 kV is found to be 7.9x10^8 A/sr cm^2
Low Energy Electron Point Projection Microscopy of Suspended Graphene, the Ultimate "Microscope Slide"
Point Projection Microscopy (PPM) is used to image suspended graphene using
low-energy electrons (100-200eV). Because of the low energies used, the
graphene is neither damaged or contaminated by the electron beam. The
transparency of graphene is measured to be 74%, equivalent to electron
transmission through a sheet as thick as twice the covalent radius of
sp^2-bonded carbon. Also observed is rippling in the structure of the suspended
graphene, with a wavelength of approximately 26 nm. The interference of the
electron beam due to the diffraction off the edge of a graphene knife edge is
observed and used to calculate a virtual source size of 4.7 +/- 0.6 Angstroms
for the electron emitter. It is demonstrated that graphene can be used as both
anode and substrate in PPM in order to avoid distortions due to strong field
gradients around nano-scale objects. Graphene can be used to image objects
suspended on the sheet using PPM, and in the future, electron holography
How does flow in a pipe become turbulent?
The transition to turbulence in pipe flow does not follow the scenario
familiar from Rayleigh-Benard or Taylor-Couette flow since the laminar profile
is stable against infinitesimal perturbations for all Reynolds numbers.
Moreover, even when the flow speed is high enough and the perturbation
sufficiently strong such that turbulent flow is established, it can return to
the laminar state without any indication of the imminent decay. In this
parameter range, the lifetimes of perturbations show a sensitive dependence on
initial conditions and an exponential distribution. The turbulence seems to be
supported by three-dimensional travelling waves which appear transiently in the
flow field. The boundary between laminar and turbulent dynamics is formed by
the stable manifold of an invariant chaotic state. We will also discuss the
relation between observations in short, periodically continued domains, and the
dynamics in fully extended puffs.Comment: for the proceedings of statphys 2
- …
