504 research outputs found

    Classification using distance nearest neighbours

    Get PDF
    This paper proposes a new probabilistic classification algorithm using a Markov random field approach. The joint distribution of class labels is explicitly modelled using the distances between feature vectors. Intuitively, a class label should depend more on class labels which are closer in the feature space, than those which are further away. Our approach builds on previous work by Holmes and Adams (2002, 2003) and Cucala et al. (2008). Our work shares many of the advantages of these approaches in providing a probabilistic basis for the statistical inference. In comparison to previous work, we present a more efficient computational algorithm to overcome the intractability of the Markov random field model. The results of our algorithm are encouraging in comparison to the k-nearest neighbour algorithm.Comment: 12 pages, 2 figures. To appear in Statistics and Computin

    Interlaced particle systems and tilings of the Aztec diamond

    Full text link
    Motivated by the problem of domino tilings of the Aztec diamond, a weighted particle system is defined on NN lines, with line jj containing jj particles. The particles are restricted to lattice points from 0 to NN, and particles on successive lines are subject to an interlacing constraint. It is shown that marginal distributions for this particle system can be computed exactly. This in turn is used to give unified derivations of a number of fundamental properties of the tiling problem, for example the evaluation of the number of distinct configurations and the relation to the GUE minor process. An interlaced particle system associated with the domino tiling of a certain half Aztec diamond is similarly defined and analyzed.Comment: 17 pages, 4 figure

    From elongated spanning trees to vicious random walks

    Full text link
    Given a spanning forest on a large square lattice, we consider by combinatorial methods a correlation function of kk paths (kk is odd) along branches of trees or, equivalently, kk loop--erased random walks. Starting and ending points of the paths are grouped in a fashion a kk--leg watermelon. For large distance rr between groups of starting and ending points, the ratio of the number of watermelon configurations to the total number of spanning trees behaves as rνlogrr^{-\nu} \log r with ν=(k21)/2\nu = (k^2-1)/2. Considering the spanning forest stretched along the meridian of this watermelon, we see that the two--dimensional kk--leg loop--erased watermelon exponent ν\nu is converting into the scaling exponent for the reunion probability (at a given point) of kk (1+1)--dimensional vicious walkers, ν~=k2/2\tilde{\nu} = k^2/2. Also, we express the conjectures about the possible relation to integrable systems.Comment: 27 pages, 6 figure

    Exact sampling from non-attractive distributions using summary states

    Full text link
    Propp and Wilson's method of coupling from the past allows one to efficiently generate exact samples from attractive statistical distributions (e.g., the ferromagnetic Ising model). This method may be generalized to non-attractive distributions by the use of summary states, as first described by Huber. Using this method, we present exact samples from a frustrated antiferromagnetic triangular Ising model and the antiferromagnetic q=3 Potts model. We discuss the advantages and limitations of the method of summary states for practical sampling, paying particular attention to the slowing down of the algorithm at low temperature. In particular, we show that such a slowing down can occur in the absence of a physical phase transition.Comment: 5 pages, 6 EPS figures, REVTeX; additional information at http://wol.ra.phy.cam.ac.uk/mackay/exac

    Noisy Monte Carlo: Convergence of Markov chains with approximate transition kernels

    Get PDF
    Monte Carlo algorithms often aim to draw from a distribution π\pi by simulating a Markov chain with transition kernel PP such that π\pi is invariant under PP. However, there are many situations for which it is impractical or impossible to draw from the transition kernel PP. For instance, this is the case with massive datasets, where is it prohibitively expensive to calculate the likelihood and is also the case for intractable likelihood models arising from, for example, Gibbs random fields, such as those found in spatial statistics and network analysis. A natural approach in these cases is to replace PP by an approximation P^\hat{P}. Using theory from the stability of Markov chains we explore a variety of situations where it is possible to quantify how 'close' the chain given by the transition kernel P^\hat{P} is to the chain given by PP. We apply these results to several examples from spatial statistics and network analysis.Comment: This version: results extended to non-uniformly ergodic Markov chain

    Criminal narrative experience: relating emotions to offence narrative roles during crime commission

    Get PDF
    A neglected area of research within criminality has been that of the experience of the offence for the offender. The present study investigates the emotions and narrative roles that are experienced by an offender while committing a broad range of crimes and proposes a model of Criminal Narrative Experience (CNE). Hypotheses were derived from the Circumplex of Emotions (Russell, 1997), Frye (1957), Narrative Theory (McAdams, 1988) and its link with Investigative Psychology (Canter, 1994). The analysis was based on 120 cases. Convicted for a variety of crimes, incarcerated criminals were interviewed and the data were subjected to Smallest Space Analysis (SSA). Four themes of Criminal Narrative Experience (CNE) were identified: Elated Hero, Calm Professional, Distressed Revenger and Depressed Victim in line with the recent theoretical framework posited for Narrative Offence Roles (Youngs & Canter, 2012). The theoretical implications for understanding crime on the basis of the Criminal Narrative Experience (CNE) as well as practical implications are discussed

    High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    Get PDF
    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Fa- cility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications

    Refined Razumov-Stroganov conjectures for open boundaries

    Full text link
    Recently it has been conjectured that the ground-state of a Markovian Hamiltonian, with one boundary operator, acting in a link pattern space is related to vertically and horizontally symmetric alternating-sign matrices (equivalently fully-packed loop configurations (FPL) on a grid with special boundaries).We extend this conjecture by introducing an arbitrary boundary parameter. We show that the parameter dependent ground state is related to refined vertically symmetric alternating-sign matrices i.e. with prescribed configurations (respectively, prescribed FPL configurations) in the next to central row. We also conjecture a relation between the ground-state of a Markovian Hamiltonian with two boundary operators and arbitrary coefficients and some doubly refined (dependence on two parameters) FPL configurations. Our conjectures might be useful in the study of ground-states of the O(1) and XXZ models, as well as the stationary states of Raise and Peel models.Comment: 11 pages LaTeX, 8 postscript figure
    corecore