216 research outputs found
Bridging the Gap Between Scope-based and Event-based Negation/Speculation Annotations: A Bridge Not Too Far
brat: a Web-based Tool for NLP-Assisted Text Annotation
We introduce the brat rapid annotation tool (BRAT), an intuitive web-based tool for text annotation supported by Natural Language Processing (NLP) technology. BRAT has been developed for rich structured annotation for a variety of NLP tasks and aims to support manual curation efforts and increase annotator productivity using NLP techniques. We discuss several case studies of real-world annotation projects using pre-release versions of BRAT and present an evaluation of annotation assisted by semantic class disambiguation on a multicategory entity mention annotation task, showing a 15 % decrease in total annotation time. BRAT is available under an opensource license from
New Resources and Perspectives for Biomedical Event Extraction
Event extraction is a major focus of recent work in biomedical information extraction. Despite substantial advances, many challenges still remain for reliable automatic extraction of events from text. We introduce a new biomedical event extraction resource consisting of analyses automatically created by systems participating in the recent BioNLP Shared Task (ST) 2011. In providing for the first time the outputs of a broad set of state-ofthe-art event extraction systems, this resource opens many new opportunities for studying aspects of event extraction, from the identification of common errors to the study of effective approaches to combining the strengths of systems. We demonstrate these opportunities through a multi-system analysis on three BioNLP ST 2011 main tasks, focusing on events that none of the systems can successfully extract. We further argue for new perspectives to the performance evaluation of domain event extraction systems, considering a document-level, “off-the-page ” representation and evaluation to complement the mentionlevel evaluations pursued in most recent work.
Attending to characters in neural sequence labeling models
Sequence labeling architectures use word embeddings for capturing similarity, but suffer when
handling previously unseen or rare words. We investigate character-level extensions to such
models and propose a novel architecture for combining alternative word representations. By
using an attention mechanism, the model is able to dynamically decide how much information to
use from a word- or character-level component. We evaluated different architectures on a range of
sequence labeling datasets, and character-level extensions were found to improve performance
on every benchmark. In addition, the proposed attention-based architecture delivered the best
results even with a smaller number of trainable parameters
PubMed-Scale Event Extraction for Post-Translational Modifications, Epigenetics and Protein Structural Relations
A realistic assessment of methods for extracting gene/protein interactions from free text
Background: The automated extraction of gene and/or protein interactions from the literature is one of the most important targets of biomedical text mining research. In this paper we present a realistic evaluation of gene/protein interaction mining relevant to potential non-specialist users. Hence we have specifically avoided methods that are complex to install or require reimplementation, and we coupled our chosen extraction methods with a state-of-the-art biomedical named entity tagger. Results: Our results show: that performance across different evaluation corpora is extremely variable; that the use of tagged (as opposed to gold standard) gene and protein names has a significant impact on performance, with a drop in F-score of over 20 percentage points being commonplace; and that a simple keyword-based benchmark algorithm when coupled with a named entity tagger outperforms two of the tools most widely used to extract gene/protein interactions. Conclusion: In terms of availability, ease of use and performance, the potential non-specialist user community interested in automatically extracting gene and/or protein interactions from free text is poorly served by current tools and systems. The public release of extraction tools that are easy to install and use, and that achieve state-of-art levels of performance should be treated as a high priority by the biomedical text mining community
Semi-supervised prediction of protein interaction sentences exploiting semantically encoded metrics
Protein-protein interaction (PPI) identification is an integral component of many biomedical research and database curation tools. Automation of this task through classification is one of the key goals of text mining (TM). However, labelled PPI corpora required to train classifiers are generally small. In order to overcome this sparsity in the training data, we propose a novel method of integrating corpora that do not contain relevance judgements. Our approach uses a semantic language model to gather word similarity from a large unlabelled corpus. This additional information is integrated into the sentence classification process using kernel transformations and has a re-weighting effect on the training features that leads to an 8% improvement in F-score over the baseline results. Furthermore, we discover that some words which are generally considered indicative of interactions are actually neutralised by this process
A neural network multi-task learning approach to biomedical named entity recognition
Named Entity Recognition (NER) is a key task in biomedical text mining. Accurate NER systems require task-specific, manually-annotated datasets, which are expensive to develop and thus limited in size. Since such datasets contain related but different information, an interesting question is whether it might be possible to use them together to improve NER performance. To investigate this, we develop supervised, multi-task, convolutional neural network models and apply them to a large number of varied existing biomedical named entity datasets. Additionally, we investigated the effect of dataset size on performance in both single- and multi-task settings.
We present a single-task model for NER, a Multi-output multi-task model and a Dependent multi-task model. We apply the three models to 15 biomedical datasets containing multiple named entities including Anatomy, Chemical, Disease, Gene/Protein and Species. Each dataset represent a task. The results from the single-task model and the multi-task models are then compared for evidence of benefits from Multi-task Learning.
With the Multi-output multi-task model we observed an average F-score improvement of 0.8% when compared to the single-task model from an average baseline of 78.4%. Although there was a significant drop in performance on one dataset, performance improves significantly for five datasets by up to 6.3%. For the Dependent multi-task model we observed an average improvement of 0.4% when compared to the single-task model. There were no significant drops in performance on any dataset, and performance improves significantly for six datasets by up to 1.1%.
The dataset size experiments found that as dataset size decreased, the multi-output model’s performance increased compared to the single-task model’s. Using 50, 25 and 10% of the training data resulted in an average drop of approximately 3.4, 8 and 16.7% respectively for the single-task model but approximately 0.2, 3.0 and 9.8% for the multi-task model.
Our results show that, on average, the multi-task models produced better NER results than the single-task models trained on a single NER dataset. We also found that Multi-task Learning is beneficial for small datasets. Across the various settings the improvements are significant, demonstrating the benefit of Multi-task Learning for this task.This work was supported by Medical Research Council [grant number MR/M013049/1] and the Cambridge Commonwealth, European and International Trust
- …
