912 research outputs found
Violation of Kohler's rule by the magnetoresistance of a quasi-two-dimensional organic metal
The interlayer magnetoresistance of the quasi-two-dimensional metal
-(BEDT-TTF)KHg(SCN) is considered. In the temperature range
from 0.5 to 10 K and for fields up to 10 tesla the magnetoresistance has a
stronger temperature dependence than the zero-field resistance. Consequently
Kohler's rule is not obeyed for any range of temperatures or fields. This means
that the magnetoresistance cannot be described in terms of semiclassical
transport on a single Fermi surface with a single scattering time. Possible
explanations for the violations of Kohler's rule are considered, both within
the framework of semi-classical transport theory and involving incoherent
interlayer transport. The issues considered are similar to those raised by the
magnetotransport of the cuprate superconductors.Comment: 5 pages, RevTeX + epsf, 2 figures. Slightly revised version to appear
in Physical Review B, May 15, 199
Low-frequency method for magnetothermopower and Nernst effect measurements on single crystal samples at low temperatures and high magnetic fields
We describe an AC method for the measurement of the longitudinal (Sxx) and
transverse (Sxy, i.e. Nernst) thermopower of mm-size single crystal samples at
low temperatures (T30 T). A low-frequency (33
mHz) heating method is used to increase the resolution, and to determine the
temperature gradient reliably in high magnetic fields. Samples are mounted
between two thermal blocks which are heated by a sinusoidal frequency f0 with a
p/2 phase difference. The phase difference between two heater currents gives a
temperature gradient at 2f0. The corresponding thermopower and Nernst effect
signals are extracted by using a digital signal processing method due. An
important component of the method involves a superconducting link, YBa2Cu3O7+d
(YBCO), which is mounted in parallel with sample to remove the background
magnetothermopower of the lead wires. The method is demonstrated for the quasi
two-dimensional organic conductor a-(BEDT-TTF)2KHg(SCN)4, which exhibits a
complex, magnetic field dependent ground state above 22.5 T at low
temperatures.Comment: 11 pages, 6 figures, 15 reference
Josephson plasma resonance in k-(BEDT-TTF)2Cu(NCS)2
A cavity perturbation technique is used to study the microwave response of
the organic superconductor k-(BEDT-TTF)2Cu(NCS)2. Observation of a Josephson
plasma resonance, below Tc (approx. 10 K), enables investigation of the vortex
structure within the mixed state of this highly anisotropic, type-II,
superconductor. Contrary to previous assumptions, frequency dependent studies
(28 - 153 GHz) indicate that the squared plasma frequency depends exponentially
on the magnetic field strength. Such behavior has been predicted for a weakly
pinned quasi-two-dimensional vortex lattice [Bulaevskii et al. Phys. Rev. Lett.
74, 801 (1995)], but has not so far been observed experimentally. Our data also
suggests a transition in the vortex structure near the irreversibility line not
previously reported for an organic superconductor using this technique.Comment: 20 pages, including 5 figures. Revised version, accepted for
publication in Phys. Rev.
Environmental protection requirements for scout/shuttle auxiliary stages
The requirements for enabling the Scout upper stages to endure the expected temperature, mechanical shock, acoustical and mechanical vibration environments during a specified shuttle mission were determined. The study consisted of: determining a shuttle mission trajectory for a 545 kilogram (1200 pound) Scout payload; compilation of shuttle environmental conditions; determining of Scout upper stages environments in shuttle missions; compilation of Scout upper stages environmental qualification criteria and comparison to shuttle mission expected environments; and recommendations for enabling Scout upper stages to endure the exptected shuttle mission environments
A Rat Body Phantom for Radiation Analysis
To reduce the uncertainties associated with estimating the biological effects of ionizing radiation in tissue, researchers rely on laboratory experiments in which mono-energetic, single specie beams are applied to cell cultures, insects, and small animals. To estimate the radiation effects on astronauts in deep space or low Earth orbit, who are exposed to mixed field broad spectrum radiation, these experimental results are extrapolated and combined with other data to produce radiation quality factors, radiation weighting factors, and other risk related quantities for humans. One way to reduce the uncertainty associated with such extrapolations is to utilize analysis tools that are applicable to both laboratory and space environments. The use of physical and computational body phantoms to predict radiation exposure and its effects is well established and a wide range of human and non-human phantoms are in use today. In this paper, a computational rat phantom is presented, as well as a description of the process through which that phantom has been coupled to existing radiation analysis tools. Sample results are presented for two space radiation environments
- …
