4,695 research outputs found
A General Correlation of Temperature Profiles Downstream of a Heated-Air Jet Directed Perpendicularly to an Air Stream
An experimental investigation was conducted to determine the temperature profile downstream of a heated-air jet directed perpendicularly to an air stream. The profiles were determined at several positions downstream of the jet as functions of jet density, jet velocity, freestream density, free-stream velocity, jet temperature, and orifice flow coefficient. A method is presented which yields a good approximation of the temperature profile in terms of dimensionless parameters of the flow and geometric conditions
Children’s experiences of domestic violence and abuse: siblings’ accounts of relational coping
This article explores how young people see their relationships, particularly their sibling relationships, in families affected by domestic violence, and how relationality emerges in their accounts as a resource to build an agentic sense of self. The ‘voice’ of children is largely absent from domestic violence literature, which typically portrays them as passive, damaged and relationally incompetent. Children’s own understandings of their relational worlds are often overlooked, and consequently existing models of children’s social interactions give inadequate accounts of their meaning-making-in-context. Drawn from a larger study of children’s experiences of domestic violence and abuse, this paper uses two case studies of sibling relationships to explore young people’s use of relational resources, for coping with violence in the home. The paper explores how relationality and coping intertwine in young people’s accounts, and disrupts the taken for granted assumption that children’s ‘premature caring’ or ‘parentification’ is (only) pathological in children’s responses to domestic violence. This has implications for understanding young people’s experiences in the present, and supporting their capacity for relationship building in the future
Dynamics of Air-Fluidized Granular System Measured by the Modulated Gradient Spin-echo
The power spectrum of displacement fluctuation of beads in the air-fluidized
granular system is measured by a novel NMR technique of modulated gradient
spin-echo. The results of measurement together with the related spectrum of the
velocity fluctuation autocorrelation function fit well to an empiric formula
based on to the model of bead caging between nearest neighbours; the cage
breaks up after a few collisions \cite{Menon1}. The fit yields the
characteristic collision time, the size of bead caging and the diffusion-like
constant for different degrees of system fluidization. The resulting mean
squared displacement increases proportionally to the second power of time in
the short-time ballistic regime and increases linearly with time in the
long-time diffusion regime as already confirmed by other experiments and
simulations.Comment: 4 figures. Submited to Physical Review Letters, April 200
Hole doping dependences of the magnetic penetration depth and vortex core size in YBa2Cu3Oy: Evidence for stripe correlations near 1/8 hole doping
We report on muon spin rotation measurements of the internal magnetic field
distribution n(B) in the vortex solid phase of YBa2Cu3Oy (YBCO) single
crystals, from which we have simultaneously determined the hole doping
dependences of the in-plane Ginzburg-Landau (GL) length scales in the
underdoped regime. We find that Tc has a sublinear dependence on
1/lambda_{ab}^2, where lambda_{ab} is the in-plane magnetic penetration depth
in the extrapolated limits T -> 0 and H -> 0. The power coefficient of the
sublinear dependence is close to that determined in severely underdoped YBCO
thin films, indicating that the same relationship between Tc and the superfluid
density is maintained throughout the underdoped regime. The in-plane GL
coherence length (vortex core size) is found to increase with decreasing hole
doping concentration, and exhibit a field dependence that is explained by
proximity-induced superconductivity on the CuO chains. Both the magnetic
penetration depth and the vortex core size are enhanced near 1/8 hole doping,
supporting the belief by some that stripe correlations are a universal property
of high-Tc cuprates.Comment: 12 pages, 13 figure
A network-based dynamical ranking system for competitive sports
From the viewpoint of networks, a ranking system for players or teams in
sports is equivalent to a centrality measure for sports networks, whereby a
directed link represents the result of a single game. Previously proposed
network-based ranking systems are derived from static networks, i.e.,
aggregation of the results of games over time. However, the score of a player
(or team) fluctuates over time. Defeating a renowned player in the peak
performance is intuitively more rewarding than defeating the same player in
other periods. To account for this factor, we propose a dynamic variant of such
a network-based ranking system and apply it to professional men's tennis data.
We derive a set of linear online update equations for the score of each player.
The proposed ranking system predicts the outcome of the future games with a
higher accuracy than the static counterparts.Comment: 6 figure
Uniaxial-Pressure induced Ferromagnetism of Enhanced Paramagnetic Sr3Ru2O7
We report a uniaxial pressure-dependence of magnetism in layered perovskite
strontium ruthenate Sr3Ru2O7. By applying a relatively small uniaxial pressure,
greater than 0.1 GPa normal to the RuO2 layer, ferromagnetic ordering manifests
below 80 K from the enhanced-paramagnet. Magnetization at 1 kOe and 2 K becomes
100 times larger than that under ambient condition. Uniaxial pressure
dependence of Curie temperature T_C suggests the first order magnetic
transition. Origin of this uniaxial-pressure induced ferromagnetism is
discussed in terms of the rotation of RuO6 octahedra within the RuO2 plane.Comment: 8 pages, 3 figures. to be published in Journal of the Physical
Society of Japan, vol.73, No.5 (2004
Antiferromagnetic Order in Disorder-Induced Insulating Phase of SrRu_{1-x}Mn_xO_3 (0.4<x<0.6)
We have performed the powder neutron diffraction measurements on the solid
solutions of SrRu_{1-x}Mn_xO_3, and found that the itinerant ferromagnetic
order observed in pure SrRuO_3 changes into the C-type antiferromagnetic (AF)
order with nearly localized d electrons in the intermediate Mn concentration
between x=0.4 and 0.6. With increasing x, the AF moment is strongly enhanced
from 1.1 mB (x=0.4) to 2.6 mB (x=0.6), which is accompanied by the elongation
of the tetragonal c/a ratio. These results suggest that the substitution of Mn
for Ru suppresses the itinerant character of the d electrons, and induces the
superexchange interaction through the compression in the c plane. We have also
found that the magnetic and transport properties observed in our tetragonal
samples are quite similar to those of recently reported orthorhombic ones.Comment: 4 pages, 4 figure
How to Choose a Champion
League competition is investigated using random processes and scaling
techniques. In our model, a weak team can upset a strong team with a fixed
probability. Teams play an equal number of head-to-head matches and the team
with the largest number of wins is declared to be the champion. The total
number of games needed for the best team to win the championship with high
certainty, T, grows as the cube of the number of teams, N, i.e., T ~ N^3. This
number can be substantially reduced using preliminary rounds where teams play a
small number of games and subsequently, only the top teams advance to the next
round. When there are k rounds, the total number of games needed for the best
team to emerge as champion, T_k, scales as follows, T_k ~N^(\gamma_k) with
gamma_k=1/[1-(2/3)^(k+1)]. For example, gamma_k=9/5,27/19,81/65 for k=1,2,3.
These results suggest an algorithm for how to infer the best team using a
schedule that is linear in N. We conclude that league format is an ineffective
method of determining the best team, and that sequential elimination from the
bottom up is fair and efficient.Comment: 6 pages, 3 figure
- …
