4,497 research outputs found
Self-consistency of the Excursion Set Approach
The excursion set approach provides a framework for predicting how the
abundance of dark matter halos depends on the initial conditions. A key
ingredient of this formalism comes from the physics of halo formation: the
specification of a critical overdensity threshold (barrier) which protohalos
must exceed if they are to form bound virialized halos at a later time. Another
ingredient is statistical, as it requires the specification of the appropriate
statistical ensemble over which to average when making predictions. The
excursion set approach explicitly averages over all initial positions, thus
implicitly assuming that the appropriate ensemble is that associated with
randomly chosen positions in space, rather than special positions such as peaks
of the initial density field. Since halos are known to collapse around special
positions, it is not clear that the physical and statistical assumptions which
underlie the excursion set approach are self-consistent. We argue that they are
at least for low mass halos, and illustrate by comparing our excursion set
predictions with numerical data from the DEUS simulations.Comment: 5 pages, 2 figure
Flame resistant elastic elastomeric fiber
Compositions exhibit elastomeric properties and possess various degrees of flame resistance. First material polyurethane, incorporates halogen containing polyol and is flame resistant in air; second contains spandex elastomer with flame retardant additives; and third material is prepared from fluorelastomer composition of copolymer of vinylidene fluoride and hexafluoropropylene
Non-flammable elastomeric fiber from a fluorinated elastomer and containing an halogenated flame retardant
Flame retardant elastomeric compositions are described comprised of either spandex type polyurethane having incorporated into the polymer chain halogen containing polyols, conventional spandex type polyurethanes in physical admixture with flame retardant additives, or fluoroelastomeric resins in physical admixture with flame retardant additives. Methods are described for preparing fibers of the flame retardant elastomeric materials and articles of manufacture comprised of the flame retardant clastomeric materials and non elastic materials such as polybenzimidazoles, fiberglass, nylons, etc
Flame resistant elastomeric polymer development
Elastomeric products were developed for use in the space shuttle program, and investigations were conducted to improve the properties of elastomers developed in previous programs, and to evaluate the possibility of using lower-cost general purpose polymers. Products were fabricated and processed on conventional processing equipment; these products include: foams based on fluorinated rubber flame-retarded compounds with a density of 20-30 pounds/cubic foot for use as padding and in helmets; foams based on urethane for use in instrument packaging in the space shuttle; flexible and semi-rigid films of fluorinated rubber and neoprene compounds that would not burn in a 70% nitrogen, 30% oxygen atmosphere, and in a 30% nitrogen, 70% oxygen atmosphere, respectively for use in packaging or in laminates; coated fabrics which used both nylon and Kelvar fabric substrates, coated with either fluorinated or neoprene polymer compositions to meet specific levels of flame retardancy; and other flame-resistant materials
Flame retardant spandex type polyurethanes
Flame retardant elastomeric compositions were developed, comprised of: (1) spandex type polyurethane having incorporated into the polymer chain, halogen containing polyols; (2) conventional spandex type polyurethanes in physical admixture flame retardant additives; and (3) fluoroelastomeric resins in physical admixture with flame retardant additives. Methods of preparing fibers of the flame retardant elastomeric materials are presented and articles of manufacture comprised of the elastomeric materials are mentioned
Nonlinear Gravitational Clustering: dreams of a paradigm
We discuss the late time evolution of the gravitational clustering in an
expanding universe, based on the nonlinear scaling relations (NSR) which
connect the nonlinear and linear two point correlation functions. The existence
of critical indices for the NSR suggests that the evolution may proceed towards
a universal profile which does not change its shape at late times. We begin by
clarifying the relation between the density profiles of the individual halo and
the slope of the correlation function and discuss the conditions under which
the slopes of the correlation function at the extreme nonlinear end can be
independent of the initial power spectrum. If the evolution should lead to a
profile which preserves the shape at late times, then the correlation function
should grow as [in a universe] een at nonlinear scales. We
prove that such exact solutions do not exist; however, ther e exists a class of
solutions (``psuedo-linear profiles'', PLP's for short) which evolve as
to a good approximation. It turns out that the PLP's are the correlation
functions which arise if the individual halos are assumed to be isothermal
spheres. They are also configurations of mass in which the nonlinear effects of
gravitational clustering is a minimum and hence can act as building blocks of
the nonlinear universe. We discuss the implicatios of this result.Comment: 32 Pages, Submitted to Ap
Nonlinear Velocity-Density Coupling: Analysis by Second-Order Perturbation Theory
Cosmological linear perturbation theory predicts that the peculiar velocity
and the matter overdensity at a same point are
statistically independent quantities, as log as the initial density
fluctuations are random Gaussian distributed. However nonlinear gravitational
effects might change the situation. Using framework of second-order
perturbation theory and the Edgeworth expansion method, we study local density
dependence of bulk velocity dispersion that is coarse-grained at a weakly
nonlinear scale. For a typical CDM model, the first nonlinear correction of
this constrained bulk velocity dispersion amounts to (Gaussian
smoothing) at a weakly nonlinear scale with a very weak dependence on
cosmological parameters. We also compare our analytical prediction with
published numerical results given at nonlinear regimes.Comment: 16 pages including 2 figures, ApJ 537 in press (July 1
Searching for the earliest galaxies in the 21 cm forest
We use a model developed by Xu et al. (2010) to compute the 21 cm line
absorption signatures imprinted by star-forming dwarf galaxies (DGs) and
starless minihalos (MHs). The method, based on a statistical comparison of the
equivalent width (W_\nu) distribution and flux correlation function, allows us
to derive a simple selection criteria for candidate DGs at very high (z >= 8)
redshift. We find that ~ 18% of the total number of DGs along a line of sight
to a target radio source (GRB or quasar) can be identified by the condition
W_\nu < 0; these objects correspond to the high-mass tail of the DG
distribution at high redshift, and are embedded in large HII regions. The
criterion W_\nu > 0.37 kHz instead selects ~ 11% of MHs. Selected candidate DGs
could later be re-observed in the near-IR by the JWST with high efficiency,
thus providing a direct probe of the most likely reionization sources.Comment: 8 pages, 3 figures. Accepted for publication in Science in China
Series
Close Pairs as Proxies for Galaxy Cluster Mergers
Galaxy cluster merger statistics are an important component in understanding
the formation of large-scale structure. Unfortunately, it is difficult to study
merger properties and evolution directly because the identification of cluster
mergers in observations is problematic. We use large N-body simulations to
study the statistical properties of massive halo mergers, specifically
investigating the utility of close halo pairs as proxies for mergers. We
examine the relationship between pairs and mergers for a wide range of merger
timescales, halo masses, and redshifts (0<z<1). We also quantify the utility of
pairs in measuring merger bias. While pairs at very small separations will
reliably merge, these constitute a small fraction of the total merger
population. Thus, pairs do not provide a reliable direct proxy to the total
merger population. We do find an intriguing universality in the relation
between close pairs and mergers, which in principle could allow for an estimate
of the statistical merger rate from the pair fraction within a scaled
separation, but including the effects of redshift space distortions strongly
degrades this relation. We find similar behavior for galaxy-mass halos, making
our results applicable to field galaxy mergers at high redshift. We investigate
how the halo merger rate can be statistically described by the halo mass
function via the merger kernel (coagulation), finding an interesting
environmental dependence of merging: halos within the mass resolution of our
simulations merge less efficiently in overdense environments. Specifically,
halo pairs with separations less than a few Mpc/h are more likely to merge in
underdense environments; at larger separations, pairs are more likely to merge
in overdense environments.Comment: 12 pages, 9 figures; Accepted for publication in ApJ. Significant
additions to text and two figures changed. Added new findings on the
universality of pair mergers and added analysis of the effect of FoF linking
length on halo merger
- …
